Biosorbent from Petai (Parkia speciosa) Residue for Removing Lead Ion in Aqueous Solution: FTIR Analysis and Adsorption Characteristics Study

Article Preview

Abstract:

Removing lead ion in aqueous solution using petai (Parkia speciosa) residue was done well. Petai residue is modified with sodium hydroxide and sulfuric acid before batch adsorption process occured. The results showed that the highest adsorption capacity was found in acid modification that was 2.62 mg/g.Temkin and Dubininmodels fit the adsorption isotherms of all adsorbents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-81

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C Liang, H Xiao, Z Hu, X Zhang, J Hu, Uptake, transportation and accumulation of C60 fullerene and heavy metal ions (Cd, Cu and Pb) in rice palnts grown in an agricutural soil, Environ. Pollut. 235 (2018) 330-338.

DOI: 10.1016/j.envpol.2017.12.062

Google Scholar

[2] Y Dai, Q Sun, W Wang, L Lu, M Liu, J Li, S Yang, Y Sun, K Zhang, J Xu, W Zheng, Z Hu, Y Yang, Y Gao, Y Chen, X Zhang, F Gao, Y Zhang, Utilizations of agricultural waste as adsorbent for the removal of cotaminants: A review, Chemosphere 211 (2018) 235-253.

DOI: 10.1016/j.chemosphere.2018.06.179

Google Scholar

[3] L. D. Hafshejani, S. B. Nasab, R. M. Gholami, M. Moradzadeh, Z. Izadpanaha, S. B. Hafshejani, A. Bhatnagar, Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent, J. Mol. Liq. 211 (2015) 448-456.

DOI: 10.1016/j.molliq.2015.07.044

Google Scholar

[4] I. Safrianti, N. Wahyuni and T.A. Zaharah, Lead adsorption (II) by celullose waste straw rice ctivated nitric acid: effect of pH and contact time, J. JKK, 1(1) (2012) 1-7.

Google Scholar

[5] F. A. Putri, N. F. Hamadi, A. Y. D. Lestari, A. C. M. Sahid, T. Mutiara, Potential of modified corn cob (Zea mays L.) and petai hull (Parkia hassk) as a new biosorbent for removal of lead waste, KEM, 783 (2018) 126-131.

DOI: 10.4028/www.scientific.net/kem.783.126

Google Scholar

[6] X. L. Yu, Y. He, Optimal ranges of variables for an effective adsorption of lead (II) by the agricultural waste pomelo (Citrus grandis) peels using Doehlert design, Sci. Rep. 729(8) (2018).

DOI: 10.1038/s41598-018-19227-y

Google Scholar

[7] G. J. Copello, M. P. Pesenti, M. Raineri, A. M. Mebert, L. L. Piehl, E. R. D. Celis, Polyphenol-SiO2 hybrid biosorbent for heavy metal removal. Yerba mate waste (Ilex paraguariensis) as polyphenol source: kinetics and isotherm studies, Colloids Surf. B: Biointerfaces, 102 (2013) 218-226.

DOI: 10.1016/j.colsurfb.2012.08.015

Google Scholar

[8] M. K. Mondal, Removalof Pb(II) from aqueous solution by adsorption using actvated tea waste. Korean J. Chem. Eng. 27(1) (2010) 144-151.

DOI: 10.1007/s11814-009-0304-6

Google Scholar

[9] W. N. L. dos Santosa, D. D. Cavalcante, E. G. P. da Silva, C. F. das Virgens, F. de Souza Dias, Biosorption of Pb(II) and Cd(II) ions by Agave sisalana (sisalv fibr), Microchem. J. 97 (2011) 269-273.

DOI: 10.1016/j.microc.2010.09.014

Google Scholar

[10] S. R. Shukla, S. P. Roshan, Removal of b(II) from solution using cellulose containing materials. J. Chem. Technol. Biotechnol. 80(2) (2005) 176-183.

DOI: 10.1002/jctb.1176

Google Scholar