The Effect of pH on the Characteristics of Carbonate Hydroxyapatite Based on Pearl Shell (Pinctada maxima)

Article Preview

Abstract:

Carbonate Hydroxyapatite (CHAp) is one of biomaterial that can be synthesized from natural ingredients. CHAp has been successfully synthesized from pearl shells (Pinctada maxima) using the precipitation method. The pH of the synthesis process affects several characteristics of CHAp, including crystallinity, crystal size, morphology, and carbonate content. XRD data showed that CaO obtained from pearl shell powder through the calcination process. The highest crystallinity of CHAp occurs when the pH is 8, and the lowest is at pH 10. The size of the crystalline CHAp decreased when the pH increased. Based on SEM data, the morphology of CaO looks more tenuous than the morphology of CaCO3 due to CO2 release during the decomposition process. The magnitude of pH greatly influences the morphology of CHAp where morphology looks different for different pH. EDX data shows that CHAp has the highest carbonate content when pH 10 with a smaller Ca/P ratio when the carbonate content gets bigger.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-49

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Riskesdas, Riset Kesehatan Dasar, Badan Penelitian dan Pengembangan Kesehatan Departemen Kementerian Kesehatan RI, Jakarta, (2013).

DOI: 10.14203/press.298

Google Scholar

[2] S. Arabnejad, R. B. Johnston, J. A. Putra, B. Slingh, M. Tanzer, D. Pasini, High-Strength Porous Biomaterials For Bone Replacement: A Strategy To Assess The Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints, Acta. Biomater. 30 (2016) 345-356.

DOI: 10.1016/j.actbio.2015.10.048

Google Scholar

[3] A. Oryan, S. Alidadi, Reconstruction Of Radial Bone Defect In Rat By Calcium Silicate Biomaterials, Life Sci. 201 (2018) 45-53.

DOI: 10.1016/j.lfs.2018.03.048

Google Scholar

[4] A. S. Kupiec, K. Pluta, A. Drabczyk, M. Wlos, B. Tyliszczak, Synthesis and Characterization Of Ceramic - Polymer Composites Containing Bioactive Synthetic Hydroxyapatite For Biomedical Applications, Ceram. Int. 44(12) (2018) 13630-13638.

DOI: 10.1016/j.ceramint.2018.04.199

Google Scholar

[5] J. Latocha, M. Wojansinski, K. Jurczak, S. Glerlotka, P. Sobieszuk, T. Clach, Precipitation of hydroxyapatite nanoparticles in 3D-printed reactors, Chem. Eng. Processing: Process Intensification, 133 (2018) 221-233.

DOI: 10.1016/j.cep.2018.10.001

Google Scholar

[6] Y. S. Wu, Y. H. Lee, H. C. Chang, Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method, Mater. Sci. Eng. C, 29(1) (2009) 237-241.

DOI: 10.1016/j.msec.2008.06.018

Google Scholar

[7] C. C. Kee, H. Ismail, A. F. M. Noor, Effect of Synthesis Technique and Carbonate Content on the Crystallinity and Morphology of Carbonated Hydroxyapatite, J. Mater. Sci. Technol. 29(8) (2013) 761-764.

DOI: 10.1016/j.jmst.2013.05.016

Google Scholar

[8] N. Akilal, F. Lemaire, N.B. Bercu, S. Sayen, S.C. Gangloff, Y. Khelfaoui, H. Rammal, H. Kerdjoudj, Cowries Derived Aragonite As Raw Biomaterials For Bone Regenerative Medicine, Mater. Sci. Eng. C Mater. Biol. Appl. 94 (2019) 894-900.

DOI: 10.1016/j.msec.2018.10.039

Google Scholar

[9] R. Othman, Z. Mustafa, C. W. Loon, A. F. M. Noor, Effect Of Calcium Precursors and pH On The Precipitation Of Carbonated Hydroxyapatite, Procedia Chem. 19 (2016) 539-545.

DOI: 10.1016/j.proche.2016.03.050

Google Scholar

[10] E. Landi, G. Celotti, G. Logroscino, A. Tampieri, Carbonated Hydroxyapatite As Bone Substitute, J. Eur. Ceram. Soc. 23(15) (2003), 2931-2937.

DOI: 10.1016/s0955-2219(03)00304-2

Google Scholar

[11] W. H. Yang, X. F. Xi, J. F. Li, K. Y. Cai, Comparison of Crystal Structure Between Carbonated Hydroxyapatite and Natural Bone Apatite with Theoretical Calculation, Asian J. Chem. 25(7) (2013) 3637-3678.

DOI: 10.14233/ajchem.2013.13709

Google Scholar

[12] A. Bigi, E. Boanini, M. Gazzano, Ion substitution in biological and synthetic apatites, Biomineralization Biomater. Fundamentals Appl. (2016) 235-266.

DOI: 10.1016/b978-1-78242-338-6.00008-9

Google Scholar

[13] S. Rujitanapanich, P. Kumpapan, P. Wanjanoi, Synthesis of Hydroxyapatite from Oyster Shell via Precipitation, Energy Procedia, 56 (2014) 112-117.

DOI: 10.1016/j.egypro.2014.07.138

Google Scholar

[14] D. Nunez, E. Elgueta, K. Varaprasad, P. Oyarzun, Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes, Mater. Let. 230 (2018) 64-68.

DOI: 10.1016/j.matlet.2018.07.077

Google Scholar

[15] Y. Rizayanti, Y. Yusuf, Optimization of the Temperature Synthesis of Hydroxyapatite from Indonesian Crab Shells, Int. J. Nanoelectronics Mater. 12(1) (2019) 85-92.

Google Scholar

[16] N. V. Stupar, S. Novkovic, I. Jezdic, Supplementation with Bio-Calcium from Shells Pinctada maxima in Postmenopausal Women with Decreased Mineral Bone Density–Pilot Study, Srp. Arh. Celok. Lek. 137(9-10) (2009) 518-523.

DOI: 10.2298/sarh0910518v

Google Scholar

[17] D. Nunez, E. Elgueta, K. Varaprasad, P. Oyarzun, Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes, Mater. Lett. 230 (2018) 64-68.

DOI: 10.1016/j.matlet.2018.07.077

Google Scholar

[18] C. W. Loy, K. A. Mator, W. F. Lim, S. Schmid, N. Zainuddin, Z. A. Wahab, A, N. Alassan, H. M. Zaid, Effects of Calcination on the Crystallography and Nonbiogenic Aragonite Formation of Ark Clam Shell under Ambient Condition, Advances Mater. Sci. Eng. 2016 (2016) Article ID 2914368.

DOI: 10.1155/2016/2914368

Google Scholar

[19] M. Sari, Y. yusuf, Synthesis and Characterization of Hydroxyapatite based on Green Mussel Shells (Perna viridis) with Calcination Temperature Variation Using the Precipitation Method, Int. J. Nanoelectro. Mater. 11(3) (2018) 357-370.

DOI: 10.1088/1757-899x/432/1/012046

Google Scholar

[20] J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, H. Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceram. Int. 29(6) (2003) 629-633.

DOI: 10.1016/s0272-8842(02)00210-9

Google Scholar

[21] E. Landi, G. Celotti, G. Logroscino, A. Tampieri, Carbonated Hydroxyapatite As Bone Substitute, J. Eur. Ceram. Soc. 23(15) (2003) 2931-2937.

DOI: 10.1016/s0955-2219(03)00304-2

Google Scholar