[1]
X. Ding, W. Wei, W. Yu, High-performance flexible electromagnetic shielding polyimide fabric prepared by nickel-tungsten-phosphorus electroless plating, Journal of Alloys and Compounds. 777(2019) 1265-1273.
DOI: 10.1016/j.jallcom.2018.11.120
Google Scholar
[2]
J. Qiu, S. Xu, N. Liu, Organic-inorganic polyimide nanocomposites containing a tetrafunctional polyhedral oligomeric silsesquioxane amine: synthesis, morphology and thermomechanical properties, Polymer International. 67(2018) 301–312.
DOI: 10.1002/pi.5510
Google Scholar
[3]
H. Kim, G. Je, W. Chang, Wang, Measurement of the Electrical Conductivity of the Carbonized Pattern on the Surface of the Polyimide Film by Using a 355-nm Pulsed Laser. Nanoscience and Nanotechnology Letters. 10(2018)1160-1164.
DOI: 10.1166/nnl.2018.2748
Google Scholar
[4]
J. Hedrick, H. Cha, R. Miller, Polymeric organic-inorganic hybrid nanocomposites: Preparation of polyimide-modified poly (silsesquioxane) using functionalized poly (amic acid alkyl ester) precursors, Macromolecules. 30(1997)8512-8515.
DOI: 10.1021/ma970135y
Google Scholar
[5]
Zhao G, Ishizaka T, Kasai H, et al. Fabrication of unique porous polyimide nanoparticles using a reprecipitation method, Chemistry of materials. 19(2007)1901-1905.
DOI: 10.1021/cm062709w
Google Scholar
[6]
C. Wang, Preparation, characterization and properties of polymer porous materials by template method, Lanzhou: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, (2011).
Google Scholar
[7]
Q. Jiang, X. Wang, Y. Zhu, D. Hui, Y. Qiu, Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites, Compos Part B: Eng. 56(2014)408–412.
DOI: 10.1016/j.compositesb.2013.08.064
Google Scholar
[8]
T. Akhter, O. Park, H. M. Siddiqi, S. Saeedcd, Khaled Mohammad Saoud. An investigation of physico–chemical properties of a new polyimide-silica composites, The Royal Society of Chemistry. 4(2014)46587–46594.
DOI: 10.1039/c4ra06025c
Google Scholar
[9]
I. Tseng, J. Chang, S. Huang, M. Tsai, Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite films by addition of functionalized graphene oxide, Polymer International. 62(2012)827–835.
DOI: 10.1002/pi.4375
Google Scholar
[10]
P. Liu, Z. Yao, L. Li, J. Zhou, In situ synthesis and mechanical, thermal properties of polyimide nanocomposite films by addition of functionalized graphene oxide. Polymer Composites. 10(2016)907–914.
DOI: 10.1002/pc.23249
Google Scholar
[11]
J. Kwon, J. Kim, J. Lee, P. Han, D. Park, H. Han, Fabrication of polyimide composite films based on carbon black for high-temperature resistance, Polymer Composites. 35(2014)2214–2220.
DOI: 10.1002/pc.22886
Google Scholar
[12]
N. Luonga, U. Hippia, J. Korhonenb, A. Soininenb, Enhanced mechanical and electrical properties of polyimide films by graphene sheets via in situ polymerization. Polymer. 52(2011)5237–5242.
DOI: 10.1016/j.polymer.2011.09.033
Google Scholar
[13]
C. Min, P. Nie, W. Tu, C. Shen, X. Chen, H. Song, Preparation and tribological properties of polyimide/carbon sphere micro composite films under seawater condition, Tribology International. 90(2015)175–184.
DOI: 10.1016/j.triboint.2015.04.027
Google Scholar
[14]
M. Lv, F. Han, Q. Wang, T. Wang, Y. Liang. The structure properties and tribological behavior of the ionic liquid–polyimide composite films under high vacuum environment. High Performance Polymers. 10(2016)1–8.
DOI: 10.1177/0954008316632365
Google Scholar
[15]
Q. Ding, F. Wang, Properties of POB reinforced PTFE-based friction material for ultrasonic motors, Journal of Polymer Engineering. 37(2017)681–687.
DOI: 10.1515/polyeng-2016-0183
Google Scholar