Photocatalytic Fuel Cell Using TiO2/ZnO/Zn Photoanode for Greywater and Bacteria Abatements with Power Generation Concomitantly

Article Preview

Abstract:

Recycling of optional water source especially greywater and energy recovery from effluent is garnering impetus owing to clean water scarcity and energy crisis. In current work, photocatalytic fuel cell (PFC) utilizing a TiO2/ZnO/Zn photoanode and a CuO/Cu photocathode was developed for efficient greywater treatment and power generation. The photoelectrodes were measured by field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. Using 2 layers of TiO2/ZnO on Zn film, chemical oxidation demand (COD) removal efficiency had achieved 73% in the UV light-activated PFC system. The electrical generation was concomitantly found, in which the open-circuit voltage (Voc), short-current density (Jsc) and maximum power density (Pmax) were 634 mV, 0.1612 mA cm-2 and 0.0257 mW cm-2, respectively. The PFC has also revealed high antibacterial activity towards and Escherichia coli (E. coli), highlighting its potential photocatalytic and antibacterial properties for greywater reused and clean energy production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

366-371

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Noutsopoulos, A. Andreadakis, N. Kouris, D. Charchousi, P. Mendrinou, A. Galani, I. Mantziaras, E. Koumaki, Greywater characterization and loadings - Physicochemical treatment to promote onsite reuse, J. Environ. Manage. 216 (2018) 337-346.

DOI: 10.1016/j.jenvman.2017.05.094

Google Scholar

[2] S. Arden, X. Ma, Sci. Constructed wetlands for greywater recycle and reuse: A review, Total Environ, 630 (2018) 587-599.

DOI: 10.1016/j.scitotenv.2018.02.218

Google Scholar

[3] M.W. Kee, J.W. Soo, S.M. Lam, J.C. Sin, A.R. Mohamed, Evaluation of photocatalytic fuel cell (PFC) for electricity production and simultaneous degradation of methyl green in synthetic and real greywater effluents, J. Environ. Manage. 228 (2018) 383-392.

DOI: 10.1016/j.jenvman.2018.09.038

Google Scholar

[4] Y. Ye, H. Bruning, X.L. Li, D. Yntema, H.H.M. Rijnaarts, Significant enhancement of micropollutant photocatalytic degradation using a TiO2 nanotube array photoanode based photocatalytic fuel cell, Chem. Eng. J. 354 (2018) 553-562.

DOI: 10.1016/j.cej.2018.08.064

Google Scholar

[5] S. Xie, K. Ouyang, Degradation of refractory organic compounds by photocatalytic fuel cell with solar responsive WO3/FTO photoanode and air-breathing cathode, J. Colloid Inter. Sci. 500 (2017) 220-227.

DOI: 10.1016/j.jcis.2017.04.002

Google Scholar

[6] J.C. Sin, S.M. Lam, I. Satoshi, K.T. Lee, A.R. Mohamed, Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol, Appl. Catal. B: Environ. 148–149 (2014) 258-268.

DOI: 10.1016/j.apcatb.2013.11.001

Google Scholar

[7] S.M. Lam, J.C. Sin, A.R. Mohamed, Cr2O3 nanoparticles anchored on ZnO nanorods as active heterostructure catalysts for phenol degradation, Sains Malays. 47 (2018) 253-259.

Google Scholar

[8] S.M. Lam, J.A. Quek, J.C. Sin, Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity, J. Photochem. Photobiol. A: Chem. 353 (2018) 171-185.

DOI: 10.1016/j.jphotochem.2017.11.021

Google Scholar

[9] R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light, Mater. Chem. Phys. 125 (2011) 277-280.

DOI: 10.1016/j.matchemphys.2010.09.030

Google Scholar

[10] Y. Bessekhouad, D. Robert, J.V. Weber, Bi2S3/TiO2 And CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, J. Photochem. Photobiol. A: Chem. 163 (2004) 569-580.

DOI: 10.1016/j.jphotochem.2004.02.006

Google Scholar

[11] A. Zyoud, M. Dwikat, S. Al-Shakhshit, S. Ateeq, J. Shteiwi, A. Zubi, M.H.S. Helal, G. Campet, D.H. Park, H.S. Kwon, T.W. Kim, M. Kharoof, R. Shawahna, H.S. Hilal, Natural dye-sensitized ZnO nano-particles as photo-catalysts in complete degradation of E. coli bacteria and their organic content, J. Photochem. Photobiol. A Chem 328 (2016) 207–216.

DOI: 10.1016/j.jphotochem.2016.05.020

Google Scholar

[12] S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Investigation on visible-light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in the presence of MoO3/ZnO nanorod composites, J. Mol. Catal. A: Chem. 370 (2013) 123-131.

DOI: 10.1016/j.molcata.2013.01.005

Google Scholar

[13] A. El Mragui, I.Daou, O. Zegaoui, Influence of the preparation method and ZnO/(ZnO + TiO2) weight ratio on the physicochemical and photocatalytic properties of ZnO-TiO2 nanomaterials, Accepted in Catal. Today (2018).

DOI: 10.1016/j.cattod.2018.01.016

Google Scholar

[14] M. Jlassi, H. Chorfi, M. Saadoun, B. Bessaïs, ZnO ratio-induced photocatalytic behavior of TiO2–ZnO nanocomposite, Superlattices Microstruct. 62 (2013) 192-199.

DOI: 10.1016/j.spmi.2013.07.020

Google Scholar

[15] J.Z. Ma, J.L. Liu, Y. Bao, Z.F. Zhu, H. Liu, Morphology-photocatalytic properties-growth mechanism for ZnO nanostructures via microwave-assisted hydrothermal synthesis, Cryst. Res. Technol. 48 (2013) 251-260.

DOI: 10.1002/crat.201300026

Google Scholar

[16] M.J. Cao, F. Wang, J.F. Zhu, X. Zhang, Y. Qin, L. Wang, Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties, Mater. Lett. 192 (2017) 1-4.

DOI: 10.1016/j.matlet.2017.01.051

Google Scholar

[17] K.A. Wong, S.M. Lam, J.C. Sin, Wet chemically synthesized ZnO structures for photodegradation of pre-treated palm oil mill effluent and antibacterial activity, Accepted in Ceram. Intern. (2018).

DOI: 10.1016/j.ceramint.2018.10.078

Google Scholar