[1]
Trong LD, Thao TT, Dinh NN. 2015. Characterization of the Li-ionic conductivity of La(2/3 − x)Li3xTiO3 ceramics used for all-solid-state batteries. Solid State Ionics. 278: 228–232.
DOI: 10.1016/j.ssi.2015.05.027
Google Scholar
[2]
Teranishi T. et al. 2016. Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol–gel process. Solid State Ionics. 284: 1–6.
DOI: 10.1016/j.ssi.2015.11.029
Google Scholar
[3]
Zhao S, Qin Li Q. 2003. Li–V–Si–O thin film electrolyte for all-solid-state Li-ion battery. Journal of Power Sources. 122: 174–180.
DOI: 10.1016/s0378-7753(03)00400-2
Google Scholar
[4]
Hua L, Xu K. 2014. Nonflammable electrolyte enhances battery safety. PNAS. 111( 9): 3205–3206.
Google Scholar
[5]
Abhilash KP, et al. 2016. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries. Journal of Physics and Chemistry of Solids. 91:114–121.
DOI: 10.1016/j.jpcs.2015.12.015
Google Scholar
[6]
Stramare S., Thangadurai V, Weppner, W. 2003. Lithium Lanthanum Titanates: A Review. Chem. Mater. 15: 3974-3990.
DOI: 10.1021/cm0300516
Google Scholar
[7]
Inaguma Y, Nakashima M. 2013. A rechargeable lithium air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. Journal of Power Sources. 228: 250e255.
DOI: 10.1016/j.jpowsour.2012.11.098
Google Scholar
[8]
Jay EE, Rushton MJD, Chroneous A, Grimes RW, Kilner JA 2012. Genetics pf superionic conductivity in lithium lanthanum titanates. Phys. Chem. Chemical Physics 00: 1-6.
DOI: 10.1039/c4cp04834b
Google Scholar
[9]
Ban CW, Choi GM. 2001. The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ionics. 140: 285-292.
DOI: 10.1016/s0167-2738(01)00821-9
Google Scholar
[10]
Alexander K, Ganesh P, Chi M, Kent P, Sumpter B. 2016. Grain boundary stability and influence on ionic conductivity in a disordered perovskite -a first-principles investigation of lithium lanthanum titanate. MRS Communications. 6:445-463.
DOI: 10.1557/mrc.2016.58
Google Scholar
[11]
Yu K, Tian Y, Gu R, Jin L, Ma R, Sun H, Xu Y, Zu Z, Wei X. 2018. Ionic conduction, colossal permittivity and dielectric relaxation behavior of solid electrolyte Li3xLa2/3-xTiO3 ceramics. J. European Cer. Soc. 38:4483-4487.
DOI: 10.1016/j.jeurceramsoc.2018.05.023
Google Scholar
[12]
Hu X, Quiang, Huang B. 2017. Preparation and properties of LixLa0.5TiO3 perovskite oxide electrolytes. Journal of the American Ceramic Society 100(9): 4153-4158.
Google Scholar
[13]
Wolfenstinea J, et al. 2010. Hot-pressed Li0.33La0.57TiO3. Journal of Power Sources. 195: 4124-4128.
Google Scholar
[14]
Cervera RB, Miyoshi S, Oyama Y, Elammari YE, Yagi T, Yamaguchi S. 2013. Perovskite-Structured BaScO2(OH) as a novel proton conductor: heavily hydrated phase obtained via low-temperature synthesis. Chem. Mater. 25: 1483−1489.
DOI: 10.1021/cm302983d
Google Scholar
[15]
Wolfenstine J, Allen JL, Read J, Sakamoto J, Gonalez-Dencel G. 2010. Hot-pressed Li0.33La0.57TiO3. Journal of Power Sources 195:4124-4128.
DOI: 10.1016/j.jpowsour.2009.12.109
Google Scholar
[16]
Bueta FR, Imperial, JF, Cervera RB. 2017. Structure and conductivity of NiO/YSZ composite prepared via modified glycine-nitrate process at varying sintering temperatures. Ceramics International. 43: 16174–16177.
DOI: 10.1016/j.ceramint.2017.08.193
Google Scholar
[17]
Garcia, RM, Cervera RB. 2019. Morphology and structure of Ni/Zr0.84Sc0.16O1.92 electrode Material synthesized via glycine-nitrate combustion method for solid oxide electrochemical cell. Applied Sciences. 9: 264.
DOI: 10.3390/app9020264
Google Scholar