Solid State Reaction Synthesis and Characterization of Lithium Lanthanum Titanate Lithium-Ion Conducting Solid Electrolyte with Different Li to La Content

Article Preview

Abstract:

Lithium Lanthanum Titanate, Li3xLa(2/3)-x(1/3)-2xTiO3, with three different compositions of (i) x = 0.097 (Li0.29La0.57TiO3), (ii) x = 0.117 (Li0.35La0.55TiO3), and (iii) x = 0.167 (Li0.50La0.50TiO3) were prepared via solid state reaction synthesis sintered at 1150 °C for 36 hours. X-ray diffraction (XRD) analysis revealed that all samples can be indexed to a cubic perovskite structure with lattice parameter a of about 3.86 Å. Morphological analysis using SEM showed that the samples are relatively dense and the calculated relative density of the LLTO samples range from about 94% to as high as 99% with increasing trend as Li content increases. Room temperature conductivity and its temperature dependence up to 120 °C were investigated. LLTO sample with x =0.117 revealed the highest total ionic conductivity at room temperature of about 1.69 x 10-03 S/cm which can be a promising solid electrolyte for an all-solid-state lithium-ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

389-394

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Trong LD, Thao TT, Dinh NN. 2015. Characterization of the Li-ionic conductivity of La(2/3 − x)Li3xTiO3 ceramics used for all-solid-state batteries. Solid State Ionics. 278: 228–232.

DOI: 10.1016/j.ssi.2015.05.027

Google Scholar

[2] Teranishi T. et al. 2016. Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol–gel process. Solid State Ionics. 284: 1–6.

DOI: 10.1016/j.ssi.2015.11.029

Google Scholar

[3] Zhao S, Qin Li Q. 2003. Li–V–Si–O thin film electrolyte for all-solid-state Li-ion battery. Journal of Power Sources. 122: 174–180.

DOI: 10.1016/s0378-7753(03)00400-2

Google Scholar

[4] Hua L, Xu K. 2014. Nonflammable electrolyte enhances battery safety. PNAS. 111( 9): 3205–3206.

Google Scholar

[5] Abhilash KP, et al. 2016. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries. Journal of Physics and Chemistry of Solids. 91:114–121.

DOI: 10.1016/j.jpcs.2015.12.015

Google Scholar

[6] Stramare S., Thangadurai V, Weppner, W. 2003. Lithium Lanthanum Titanates: A Review. Chem. Mater. 15: 3974-3990.

DOI: 10.1021/cm0300516

Google Scholar

[7] Inaguma Y, Nakashima M. 2013. A rechargeable lithium air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. Journal of Power Sources. 228: 250e255.

DOI: 10.1016/j.jpowsour.2012.11.098

Google Scholar

[8] Jay EE, Rushton MJD, Chroneous A, Grimes RW, Kilner JA 2012. Genetics pf superionic conductivity in lithium lanthanum titanates. Phys. Chem. Chemical Physics 00: 1-6.

DOI: 10.1039/c4cp04834b

Google Scholar

[9] Ban CW, Choi GM. 2001. The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ionics. 140: 285-292.

DOI: 10.1016/s0167-2738(01)00821-9

Google Scholar

[10] Alexander K, Ganesh P, Chi M, Kent P, Sumpter B. 2016. Grain boundary stability and influence on ionic conductivity in a disordered perovskite -a first-principles investigation of lithium lanthanum titanate. MRS Communications. 6:445-463.

DOI: 10.1557/mrc.2016.58

Google Scholar

[11] Yu K, Tian Y, Gu R, Jin L, Ma R, Sun H, Xu Y, Zu Z, Wei X. 2018. Ionic conduction, colossal permittivity and dielectric relaxation behavior of solid electrolyte Li3xLa2/3-xTiO3 ceramics. J. European Cer. Soc. 38:4483-4487.

DOI: 10.1016/j.jeurceramsoc.2018.05.023

Google Scholar

[12] Hu X, Quiang, Huang B. 2017. Preparation and properties of LixLa0.5TiO3 perovskite oxide electrolytes. Journal of the American Ceramic Society 100(9): 4153-4158.

Google Scholar

[13] Wolfenstinea J, et al. 2010. Hot-pressed Li0.33La0.57TiO3. Journal of Power Sources. 195: 4124-4128.

Google Scholar

[14] Cervera RB, Miyoshi S, Oyama Y, Elammari YE, Yagi T, Yamaguchi S. 2013. Perovskite-Structured BaScO2(OH) as a novel proton conductor: heavily hydrated phase obtained via low-temperature synthesis. Chem. Mater. 25: 1483−1489.

DOI: 10.1021/cm302983d

Google Scholar

[15] Wolfenstine J, Allen JL, Read J, Sakamoto J, Gonalez-Dencel G. 2010. Hot-pressed Li0.33La0.57TiO3. Journal of Power Sources 195:4124-4128.

DOI: 10.1016/j.jpowsour.2009.12.109

Google Scholar

[16] Bueta FR, Imperial, JF, Cervera RB. 2017. Structure and conductivity of NiO/YSZ composite prepared via modified glycine-nitrate process at varying sintering temperatures. Ceramics International. 43: 16174–16177.

DOI: 10.1016/j.ceramint.2017.08.193

Google Scholar

[17] Garcia, RM, Cervera RB. 2019. Morphology and structure of Ni/Zr0.84Sc0.16O1.92 electrode Material synthesized via glycine-nitrate combustion method for solid oxide electrochemical cell. Applied Sciences. 9: 264.

DOI: 10.3390/app9020264

Google Scholar