[1]
O. Urper, İ. Çakmak, N. Karatepe, Fabrication of carbon nanotube transparent conductive films by vacuum filtration method, Materials Letters 223 (2018) 210-214.
DOI: 10.1016/j.matlet.2018.03.184
Google Scholar
[2]
D. S. Hecht, et. al., Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mat., (23) 13 (2011) 1482–1513.
DOI: 10.1002/adma.201003188
Google Scholar
[3]
Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes, Nano Energy, 28 (2016) 151-157.
DOI: 10.1016/j.nanoen.2016.08.038
Google Scholar
[4]
M. Wei, H. Wang, J. Wang, P. Chen, W. Zhao, X. Chen, J. Guo, B. Kang, Y. Duan, Flexible transparent electrodes for organic light-emitting diodes simply fabricated with AuCl3-modied graphene, Organic Electronics, 63 (2018) 71-77.
DOI: 10.1016/j.orgel.2018.08.050
Google Scholar
[5]
C.I. Awuzie, Conducting Polymers, Materials Today, 4 (4) (2017) 5721-5726.
DOI: 10.1016/j.matpr.2017.06.036
Google Scholar
[6]
S. Iqbal, S. Ahmad, Recent development in hybrid conducting polymers: Synthesis, applications and future prospects, Journal of Industrial and Engineering Chemistry, 60 (2018) 53-84.
DOI: 10.1016/j.jiec.2017.09.038
Google Scholar
[7]
P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, Y. Wei, Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications, Materials Science and Engineering: B, 223 (2017) 1-23.
DOI: 10.1016/j.mseb.2017.05.002
Google Scholar
[8]
N. De Guzman, M. Ramos, M.D. Balela, Improvements in the Electroless Deposition of Ag Nanowires in Hot Ethylene Glycol for Resistive Touchscreen Device, Material Research Bulletin, 106, (2018)446-454.
DOI: 10.1016/j.materresbull.2018.06.030
Google Scholar
[9]
N de Guzman and M.D.L. Balela, Growth of Ultralong Ag Nanowires by Electroless Deposition in Hot Ethylene Glycol for Flexible Transparent Conducting Electrodes, Journal of Nanomaterials , 2017, (2017) 14.
DOI: 10.1155/2017/7896094
Google Scholar
[10]
M.D.L. Balela and M. Tan. Formation of Ultralong Copper Nanowires by Hydrothermal Growth for Transparent Conducting Applications. AIP Conference Proceedings 1865, (2017).
DOI: 10.1063/1.4993366
Google Scholar
[11]
M. Tan and M.D.L. Balela, Electrochemical Investigation of the Growth of Copper Nanowires in the Presence of Ethylene Diamine by Mixed Potential, Journal of the Electrochemical Society, 164(7), (2017). 386-393.
DOI: 10.1149/2.0491707jes
Google Scholar
[12]
C. Prabukumar, K.Udaya Bhat, Purification of Silver Nanowires Synthesised by Polyol Method, Materials Today: Proceedings, 5 (10) (2018) 22487-22493.
DOI: 10.1016/j.matpr.2018.06.620
Google Scholar
[13]
H. Essaidi, L. Cattin, Z. El Jouad, S. Touihri, M. Blais, E. Ortega, G. Louarn, M. Morsli, T. Abachi, T. Manoubi, M. Addou, M.A. del Valle, F. Diaz, J.C. Bernède, Indium free electrode, highly flexible, transparent and conductive for optoelectronic devices, Vacuum, 153 (2018) 225-231.
DOI: 10.1016/j.vacuum.2018.04.026
Google Scholar
[14]
J.L. Elechiguerra, L. Lopez, C. Liu, D. Gutierrez, A. Bragado, and M. Yacaman, Corrosion at the nanoscale: The case of silver nanowires and nanoparticles" Chemistry of Materials 17 (24), (2005) 6042-6052.
DOI: 10.1021/cm051532n
Google Scholar
[15]
D.C. Sanchez and M.D.L. Balela, Investigation of the Electrical, Optical and Mechanical Properties of Ag Nanowire Conducting Electrode, Key Engineering Materials, 775, (2018) 156-162.
DOI: 10.4028/www.scientific.net/kem.775.156
Google Scholar
[16]
G. Deignanab and I.Goldthorpe, The dependence of silver nanowire stability on network composition and processing parameters RSC Adv.,7, (2017) 35590-35597.
DOI: 10.1039/c7ra06524h
Google Scholar
[17]
Y. Joo et. al, Silver Nanowire-embedded PDMS with Multiscale structure for highly sensitive and robust flexible pressure sensor. Nanoscale, 7, (2015), 6208-6215.
DOI: 10.1039/c5nr00313j
Google Scholar
[18]
M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. Li, Flexible transparent PES/Silver Nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding, Langmuir 28 (18), (2012) 7101-7106.
DOI: 10.1021/la300720y
Google Scholar
[19]
M.S.D.C. Dela Vega and M.D.L. Balela, Formation of Copper-Nickel Nanowires by Two-Step Method, MATEC Web of Conferences, 27, (2015).
DOI: 10.1051/matecconf/20152703006
Google Scholar
[20]
S.B. Orgen and M.D.L. Balela, Characterization of the Mechanical Integrity of Cu Nanowire-Based Transparent Conducting Electrode, Key Engineering Materials, 775, (2018) 132-138.
DOI: 10.4028/www.scientific.net/kem.775.132
Google Scholar