Numerical Simulation of Single Junction InGaN Solar Cell by SCAPS

Article Preview

Abstract:

The performance of the InGaN single-junction thin film solar cells has been analyzed numerically employing the Solar Cell Capacitance Simulator (SCAPS-1D). The electrical properties and the photovoltaic performance of the InGaN solar cells were studied by changing the doping concentrations and the bandgap energy along with each layer, i.e. n-and p-InGaN layers. The results reveal an optimum efficiency of the InGaN solar cell of ~ 15.32 % at a band gap value of 1.32 eV. It has been observed that lowering the doping concentration NA leads to an improvement of the short circuit current density (Jsc) (34 mA/cm2 at NA of 1016 cm3). This might be attributed to the increase of the carrier mobility and hence an enhancement in the minority carrier diffusion length leading to a better collection efficiency. Additionally, the results show that increasing the front layer thickness of the InGaN leads to an increase in the Jsc and to the conversion efficiency (η). This has been referred to the increase in the photogenerated current, as well as to the less surface recombination rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

407-413

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. A. Vilbois, A. Cheknane, A. Bensaoula, C. Boney, and T. Benouaz, Simulation of a solar cell based on InGaN, Energy Procedia 18 (2012) 795-806.

DOI: 10.1016/j.egypro.2012.05.095

Google Scholar

[2] M. Moustafa, A. Paulheim, M. Mohamed, C. Janowitz, R. Manzke, Angle-resolved photoemission studies of the valence bands of ZrSxSe2− x, Appl. Surf. Sci. 366 (2018) 397-403.

DOI: 10.1016/j.apsusc.2016.01.024

Google Scholar

[3] H. Xiao, X. Wang, J. Wang, N. Zhang, H. Liu, Y. Zeng, J. Li, and Z. Wang, Growth and characterization of InN on sapphire substrate by RF-MBE, J. Cryst. Growth 276 (2005) 401.

DOI: 10.1016/j.jcrysgro.2004.12.001

Google Scholar

[4] H. Hamzaoui, A.S. Bouazzi, and B. Rezig, Theoretical possibilities of InxGa1−xN tandem PV structures, Sol. Energy Mater. Sol. Cells 87 (2005) 595-603.

DOI: 10.1016/j.solmat.2004.08.020

Google Scholar

[5] X. Huang, Houqiang Fu, H. Chen, X. Zhang, Z. Lu, J. Montes, M. Iza, St. P. DenBaars, S. Nakamura, and Y. Zhao, Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency, Appl. Phys. Lett. 110, (2017) 161105.

DOI: 10.1063/1.4980139

Google Scholar

[6] Z. Keyan, W. Yadong, and C. Soo Jin, Low dimensional nanostructured InGaN multi-quantum wells by selective area heteroepitaxy, Phys. Status Solidi C, 6 S2S (2009) S514-S518.

DOI: 10.1002/pssc.200880777

Google Scholar

[7] M. Burgelman, K. Decock, S. Khelifi and A. Abass, Advanced electrical simulation of thin film solar cells, Thin Solid Films 535 (2013) 296-301.

DOI: 10.1016/j.tsf.2012.10.032

Google Scholar

[8] M. Moustafa and T. AlZoubi, Numerical study of CdTe solar cells with p-MoTe2 TMDC as an interfacial layer using SCAPS, Modern Physics Letters B 32, No. 23, (2018) 1850269.

DOI: 10.1142/s021798491850269x

Google Scholar

[9] M. Moustafa and T. AlZoubi, Effect of the n-MoTe2 interfacial layer in cadmium telluride solar cells using SCAPS, Optik 120 (2018) 101-105.

DOI: 10.1016/j.ijleo.2018.05.112

Google Scholar

[10] A. S. Barker, Jr. and M. Ilegems, Infrared Lattice Vibrations and Free-Electron Dispersion in GaN, Phys. Rev. B 7 (1973) 743.

DOI: 10.1103/physrevb.7.743

Google Scholar

[11] Z. Z. Bandić, P. M. Bridger, E. C. Piquette, and T. C. McGill, Minority carrier diffusion length and lifetime in GaN, Appl. Phys. Lett. 72 (1998) 3166.

DOI: 10.1063/1.121581

Google Scholar

[12] X. Huang, Houqiang Fu, H. Chen, X. Zhang, Z. Lu, J. Montes, M. Iza, St.P. DenBaars, S. Nakamura, and Y. Zhao, Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency, Appl. Phys. Lett. 110 (2017) 161105.

DOI: 10.1063/1.4980139

Google Scholar

[13] J.A. Van Vechten, T. K. Bergstresser, Electronic Structures of Semiconductor Alloys, Phys. Rev. B1 (1970) 3351.

DOI: 10.1103/physrevb.1.3351

Google Scholar

[14] F. Bouzid and L. Hamlaoui, Investigation of InGaN/Si double junction tandem solar cells, J. Fundam Appl Sci. 4 (2012) 59-71.

DOI: 10.4314/jfas.v4i2.1

Google Scholar

[15] A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, Design and Simulation of InGaN 𝑝-𝑛 Junction Solar Cell, Int. J. photoenergy 2015 (2015) 1-9.

DOI: 10.1155/2015/594858

Google Scholar

[16] S. R. Kurtz, P. Faine, and J. M. Olson, Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter, J. Appl. Phys. 68 (4) (1990) 1890-895.

DOI: 10.1063/1.347177

Google Scholar

[17] Z. Li, H. Xiao, X. Wang, C. Wang, Q. Deng, L. Jing, J. Ding, X. Hou, Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell, Physica B 414 (2013) 110-114.

DOI: 10.1016/j.physb.2013.01.026

Google Scholar