[1]
S. O. Akinwamide, S.M. Lemika, B.O. Obadele, O.J. Akinribide, B.T. Abe, P.A. Olubambi, Study of microstructural and mechanical properties of Stir Cast Al(SiC-Mg-TiFe) Composite, Fluid Dyn. Mater. Process. 15 (2019) 15-26.
DOI: 10.32604/fdmp.2019.04761
Google Scholar
[2]
B. P. Kumar, A. K. Birru, Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method, T. Nonferr. Metal. Soc. 27 (2017) 2555-2572.
DOI: 10.1016/s1003-6326(17)60284-x
Google Scholar
[3]
K. Shorowordi, T. Laoui, A. Haseeb, J.-P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, J. Mater. Process. Technol. 142 (2003) 738-743.
DOI: 10.1016/s0924-0136(03)00815-x
Google Scholar
[4]
A. Divecha, S. Fishman, S. Karmarkar, Silicon carbide reinforced aluminum-A formable composite, JOM, 33 (1981) 12-17.
DOI: 10.1007/bf03339487
Google Scholar
[5]
B. Li, Y. Liu, J. Li, H. Cao, L. He, Effect of sintering process on the microstructures and properties of in situ TiB2–TiC reinforced steel matrix composites produced by spark plasma sintering, J. Mater. Process. Technol., 210 (2010) 91-95.
DOI: 10.1016/j.jmatprotec.2009.08.008
Google Scholar
[6]
C.-L. Chen, A. Richter, R. Thomson, Mechanical properties of intermetallic phases in multi-component Al–Si alloys using nanoindentation, J. Intermet. 17 (2009) 634-641.
DOI: 10.1016/j.intermet.2009.02.003
Google Scholar
[7]
M. E. Maja, O. E. Falodun, B. A. Obadele, S. R. Oke, P. A. Olubambi, Nanoindentation studies on TiN nanoceramic reinforced Ti–6Al–4V matrix composite, Ceram. Int., 44 (2018) 4419-4425.
DOI: 10.1016/j.ceramint.2017.12.042
Google Scholar
[8]
K. D. Sattler, Handbook of Nanophysics: Clusters and Fullerenes, CRC press, Florida, (2017).
Google Scholar
[9]
D. Džunić, S. Mitrović, M. Babić, I. Bobić, M. Pantić, D. Adamović, B. Nedeljković, Nanoindentation of Za-27 Alloy Based Nanocomposites Reinforced with Al2O3 Particles" Tribol. Ind. 37 (2015) 413-420.
Google Scholar
[10]
J. Nohava, N. Randall, N. Conté, Novel ultra nanoindentation method with extremely low thermal drift: Principle and experimental results, J. Mater. Res. 24 (2009) 873-882.
DOI: 10.1557/jmr.2009.0114
Google Scholar
[11]
A. Hynowska, E. Pellicer, J. Fornell, S. González, N. van Steenberge, S. Suriñach, A. Gebert, M. Calin, J. Eckert, M. Dolors Baro, J. Sort, Nanostructured β-phase Ti–31.0 Fe–9.0 Sn and sub-μm structured Ti–39.3 Nb–13.3 Zr–10.7 Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances, Mater. Sci. Eng. C 32 (2012) 2418-2425.
DOI: 10.1016/j.msec.2012.07.016
Google Scholar
[12]
M. H. Rahman, H. M. Al Rashed, Characterization of silicon carbide reinforced aluminum matrix composites, Procedia Eng. 90 (2014) 103-109.
DOI: 10.1016/j.proeng.2014.11.821
Google Scholar
[13]
S. Mohal, Microstructural Investigation of Aluminium-Silicon Carbide Particulate Metal Matrix Composite Fabricated by Stir Casting, Int. J. Innov. Res. Sci. Technol. 3 (2017) 2349-2510.
Google Scholar
[14]
W. C. Oliver, G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20.
DOI: 10.1557/jmr.2004.19.1.3
Google Scholar
[15]
J. M. Wheeler, Nanoindentation under dynamic conditions, University of Cambridge, England, (2009).
Google Scholar
[16]
G. Miranda, S. Madeira, F. Silva, O. Carvalho, A nanoindentation study on Al3Ni interface of Ni reinforced aluminum-silicon composite, Mech. Adv. Mater. Struct. 24 (2017) 871-874.
DOI: 10.1080/15376494.2016.1196790
Google Scholar
[17]
J. Deva Reddy, Mechanical properties of Silicon Carbide (SiC) thin films, University of South Florida, Florida, (2008).
Google Scholar