A Nanoindentation Study on Al (TiFe-Mg-SiC) Composites Fabricated via Stir Casting

Article Preview

Abstract:

The limitations of aluminium in most engineering applications has led to the development of aluminium matrix composites with improved microstructural and mechanical properties. Nanoindentation techniques was used in assessing the mechanical properties of fabricated aluminium matrix composites with ferrotitanium and silicon carbide as reinforcements. Results from nanoindentation experiments shows the dependence of modulus of elasticity, microhardness and contact depth on the dispersion of ferrotitanium and silicon carbide reinforcements within the aluminium matrix. Highest nanohardness value was observed in composite with 7 wt. % silicon carbide, while the lowest elastic modulus was recorded in as-cast aluminium. Further analysis of specimens confirmed a decrease in maximum penetration depth with respective increase in the addition of silicon carbide reinforcements in the fabricated composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-88

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. O. Akinwamide, S.M. Lemika, B.O. Obadele, O.J. Akinribide, B.T. Abe, P.A. Olubambi, Study of microstructural and mechanical properties of Stir Cast Al(SiC-Mg-TiFe) Composite, Fluid Dyn. Mater. Process. 15 (2019) 15-26.

DOI: 10.32604/fdmp.2019.04761

Google Scholar

[2] B. P. Kumar, A. K. Birru, Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method, T. Nonferr. Metal. Soc. 27 (2017) 2555-2572.

DOI: 10.1016/s1003-6326(17)60284-x

Google Scholar

[3] K. Shorowordi, T. Laoui, A. Haseeb, J.-P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, J. Mater. Process. Technol. 142 (2003) 738-743.

DOI: 10.1016/s0924-0136(03)00815-x

Google Scholar

[4] A. Divecha, S. Fishman, S. Karmarkar, Silicon carbide reinforced aluminum-A formable composite, JOM, 33 (1981) 12-17.

DOI: 10.1007/bf03339487

Google Scholar

[5] B. Li, Y. Liu, J. Li, H. Cao, L. He, Effect of sintering process on the microstructures and properties of in situ TiB2–TiC reinforced steel matrix composites produced by spark plasma sintering, J. Mater. Process. Technol., 210 (2010) 91-95.

DOI: 10.1016/j.jmatprotec.2009.08.008

Google Scholar

[6] C.-L. Chen, A. Richter, R. Thomson, Mechanical properties of intermetallic phases in multi-component Al–Si alloys using nanoindentation, J. Intermet. 17 (2009) 634-641.

DOI: 10.1016/j.intermet.2009.02.003

Google Scholar

[7] M. E. Maja, O. E. Falodun, B. A. Obadele, S. R. Oke, P. A. Olubambi, Nanoindentation studies on TiN nanoceramic reinforced Ti–6Al–4V matrix composite, Ceram. Int., 44 (2018) 4419-4425.

DOI: 10.1016/j.ceramint.2017.12.042

Google Scholar

[8] K. D. Sattler, Handbook of Nanophysics: Clusters and Fullerenes, CRC press, Florida, (2017).

Google Scholar

[9] D. Džunić, S. Mitrović, M. Babić, I. Bobić, M. Pantić, D. Adamović, B. Nedeljković, Nanoindentation of Za-27 Alloy Based Nanocomposites Reinforced with Al2O3 Particles" Tribol. Ind. 37 (2015) 413-420.

Google Scholar

[10] J. Nohava, N. Randall, N. Conté, Novel ultra nanoindentation method with extremely low thermal drift: Principle and experimental results, J. Mater. Res. 24 (2009) 873-882.

DOI: 10.1557/jmr.2009.0114

Google Scholar

[11] A. Hynowska, E. Pellicer, J. Fornell, S. González, N. van Steenberge, S. Suriñach, A. Gebert, M. Calin, J. Eckert, M. Dolors Baro, J. Sort, Nanostructured β-phase Ti–31.0 Fe–9.0 Sn and sub-μm structured Ti–39.3 Nb–13.3 Zr–10.7 Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances, Mater. Sci. Eng. C 32 (2012) 2418-2425.

DOI: 10.1016/j.msec.2012.07.016

Google Scholar

[12] M. H. Rahman, H. M. Al Rashed, Characterization of silicon carbide reinforced aluminum matrix composites, Procedia Eng. 90 (2014) 103-109.

DOI: 10.1016/j.proeng.2014.11.821

Google Scholar

[13] S. Mohal, Microstructural Investigation of Aluminium-Silicon Carbide Particulate Metal Matrix Composite Fabricated by Stir Casting, Int. J. Innov. Res. Sci. Technol. 3 (2017) 2349-2510.

Google Scholar

[14] W. C. Oliver, G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20.

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[15] J. M. Wheeler, Nanoindentation under dynamic conditions, University of Cambridge, England, (2009).

Google Scholar

[16] G. Miranda, S. Madeira, F. Silva, O. Carvalho, A nanoindentation study on Al3Ni interface of Ni reinforced aluminum-silicon composite, Mech. Adv. Mater. Struct. 24 (2017) 871-874.

DOI: 10.1080/15376494.2016.1196790

Google Scholar

[17] J. Deva Reddy, Mechanical properties of Silicon Carbide (SiC) thin films, University of South Florida, Florida, (2008).

Google Scholar