Effect of High Energy Ball Milling Washing Process on Properties of Nd2Fe14B Particles Obtained by Reduction-Diffusion

Article Preview

Abstract:

Nd2Fe14B particles were obtained from mixture of neodymium oxide, iron oxide, boric acid and CaH2 by reduction-diffusion process. Two different washing processes were used for the separation of magnetic particles from Ca and CaO matrix: usual washing with water and planetary ball milling process in ethanol media. Nd2Fe14BHx hydrogenated state was formed after usual washing with water. Ethanol planetary ball milling washing procedure prevented the formation of Nd2Fe14B hydrides during washing. Variation of milling parameters allowed producing particles with different morphology such as spherical or flakes after planetary ball milling washing process. Influence of milling parameters on magnetic properties of Nd2Fe14B powder was investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-251

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, New material for permanent magnets on a base of Nd and Fe (invited), Journal of Applied Physics. 55 (1984) 2083-2087.

DOI: 10.1063/1.333572

Google Scholar

[2] D. Kim, E.S. Vasilieva, A.G. Nasibulin, D.W. Lee, O. V. Tolochko and B.K. Kim, Aerosol Synthesis and Growth Mechanism of Magnetic Iron Nanoparticles, Materials Science Forum 534-536 (2007) 9-12.

DOI: 10.4028/www.scientific.net/msf.534-536.9

Google Scholar

[3] E.S. Vasil, O. V Tolochko, V.G. Semenov, V.S. Volodin and D. Kim, Mössbauer Spectroscopy Analysis of the Phase Composition of Iron-Based Nanoparticles, Technical Physics Letters 33 (2007) 40-43.

DOI: 10.1134/s1063785007010117

Google Scholar

[4] C.J. Choi, B.K. Kim, O. Tolochko and Li-Da, Preparation and characterization of magnetic Fe, Fe/C and Fe/N nanoparticles synthesized by chemical vapor condensation process, Reviews on Advanced Materials Science 5 (2003) 487-492.

DOI: 10.1016/j.jmmm.2003.10.011

Google Scholar

[5] N.O. Gonchukova, and T.V. Larionova, Effect of long-term annealing below the glass transition range on heat capacity and Curie temperature for metallic glasses, Fizika i Khimiya Stekla 20 (1994) 134-135.

Google Scholar

[6] E.S. Gorkunov, E.A. Putilova, S.M. Zadvorkin, A. V Makarov, N.L. Pecherkina and O. V Fomina, Behavior of Magnetic Characteristics in Promising Nitrogen Containing Steels upon Elastoplastic Deformation, The Physics of Metals and Metallography 116 (2015) 838-849.

DOI: 10.1134/s0031918x15080050

Google Scholar

[7] D. V. Nazarov, O.M. Osmolovskaya, N.P. Bobrysheva, V.M. Smirnov and I. V. Murin, Peculiarities of phase transitions in nanosized vanadium dioxide: Magnetic characteristics, Nanotechnologies in Russia 7 (2012) 641-648.

DOI: 10.1134/s1995078012060092

Google Scholar

[8] S.E. Alexandrov and V.S. Protopopova, Chemical Vapor Deposition of Ni-C Films from Bis-(Ethylcyclopentadienyl) Nickel, Journal of Nanoscience and Nanotechnology 11 (2011) 8259–8263.

DOI: 10.1166/jnn.2011.5058

Google Scholar

[9] E. Burzo, Permanent Magnets Based on R-Fe-B and R-Fe-C Alloys, Rep. Prog. Phys. 61 (1998) 1099-1266.

DOI: 10.1088/0034-4885/61/9/001

Google Scholar

[10] T. S. Jang, D. H. Lee, J. H. Yu, J. C. Choi, S. W. Seo and H. Y. Lee, Fabrication of ultrafine Nd-Fe-B powder by a modified reduction-diffusion process, Rare Metals 25 (2006) 223-226.

DOI: 10.1016/s1001-0521(08)60086-8

Google Scholar

[11] C.Q. Chen, D. Kim and C.J. Choi, Influence of Ca amount on the synthesis of Nd2Fe14B particles in reduction–diffusion processes, J. Magnetism and Magnetic Materials 355 (2014) 180-183.

DOI: 10.1016/j.jmmm.2013.12.023

Google Scholar

[12] O. Koylu-Alkan, J. M. Barandiaran, D. Salazar and G. C. Hadjipanayis, Submicron R2Fe14B particles, AIP Advances 6 (2016).

DOI: 10.1063/1.4944771

Google Scholar

[13] A. M. Gabay, X. C. Hu, and G. C. Hadjipanayis, Mechanochemical Synthesis of fine R2Fe14BHx and R2Fe14B powders with R = Nd or Nd-Dy, Journal of Alloys and Compounds 574 (2013) 472-476.

DOI: 10.1016/j.jallcom.2013.05.155

Google Scholar

[14] V. Swaminathan, P. K. Deheri, S. D. Bhame and R. V. Ramanujan, Novel microwave assisted chemical synthesis of Nd2Fe14B hard magnetic nanoparticles, Nanoscale 5 (2013) 2718-2725.

DOI: 10.1039/c3nr33296a

Google Scholar

[15] A. Hussain, A. P. Jadhav, Y. K. Baek, H. J. Choi, J. Lee, and Y. S. Kang, One pot synthesis of exchange coupled Nd2Fe14B/α-Fe by pechini type sol–gel method, Journal of Nanoscience and Nanotechnology 13 (2013) 7717-7722.

DOI: 10.1166/jnn.2013.7833

Google Scholar

[16] P. K. Deheri, V. Swaminathan, S. D. Bhame, Z. Liu and Raju V. Ramanujan, Sol-Gel Based Chemical Synthesis of Nd2Fe14B Hard Magnetic Nanoparticles, Chemistry of Materials 22 (2010) 6509-6517.

DOI: 10.1021/cm103148n

Google Scholar

[17] C. W. Km, Y. H. Km, H. G. Cha and Y. S. Kang, Study on synthesis and magnetic properties of Nd-Fe-B alloy via reduction-diffusion process, Physica Scripta 129 (2007) 321-325.

DOI: 10.1088/0031-8949/2007/t129/071

Google Scholar

[18] E. Claude, S. Ram, I. Gimenez, P. Chaudouet, D. Boursier and J. C. Joubert, Evidence of a quantitative relationship between the degree of hydrogen intercalation and the coercivity of the two permanent magnet alloys Nd2Fe14B and Nd2Fe11Co3B, IEEE Transactions on Magnetics 29 (1993) 2767-2769.

DOI: 10.1109/20.281022

Google Scholar

[19] I. R. Harris, P. J. McGuiness, D. G. R. Jones and J. S. Abell, Nd-Fe-B Permanent Magnets: Hydrogen Absorption/Desorption Studies (HADS) on Ndl6Fe76B8, and Nd2Fe14B, Physica Scripta 19 (1987) 435-440.

DOI: 10.1088/0031-8949/1987/t19b/018

Google Scholar

[20] J. M. Cadogan and J. M. D. Coey, Hydrogen absorption and desorption in Nd2Fe14B, Applied Physics Letters 48 (1986) 442-444.

Google Scholar

[21] Y. Wang, J. Ahn, D. Kim, W. J. Ren, W. Liu, Z. D. Zhang and C. J. Choi, Effect of washing process on the magnetic properties of Nd-Fe-B Nanoparticles prepared by reduction-diffusion method, Journal of Magnetism and Magnetic Materials 439 (2017) 91-94.

DOI: 10.1016/j.jmmm.2017.04.081

Google Scholar

[22] N. G. Akdogan, G. C. Hadjipanayis and D. J. Sellmyer, Anisotropic PrCo5 nanoparticles by surfactant-assisted ball milling, IEEE TRANSACTIONS ON MAGNETICS 45 (2009) 4417-4419.

DOI: 10.1109/tmag.2009.2022643

Google Scholar

[23] Y. Shen, M. Q. Huang, A. K. Higgins, S. Liu, J. C. Horwath and C. H. Chen, Preparation of PrCo5 bulk magnets using nanograin powders made by surfactant-assisted high energy milling, Journal of Applied Physics 107 (2010) 7-10.

DOI: 10.1063/1.3339777

Google Scholar

[24] L. Liu, J. P. Liu, J. Zhang, W. Xia, J. Du, A. Yan, W. Li and Z. Guo, The microstructure and magnetic properties of anisotropic polycrystalline Nd2Fe14B nanoflakes prepared by surfactant-assisted cryomilling, Materials Research Express 1 (2014).

DOI: 10.1088/2053-1591/1/1/016106

Google Scholar

[25] X. An, K. Jin, N. Abbas, Q. Fang, F. Wang, J. Du, W. Xia, A. Yan, J. P. Liu and J. Zhang, High anisotropic NdFeB submicro/nanoflakes prepared by surfactant-assisted ball milling at low temperature, Journal of Magnetism and Magnetic Materials 442 (2017) 279-287.

DOI: 10.1016/j.jmmm.2017.06.071

Google Scholar

[26] W. Zuo, X. Zhao, J. Xiong, M. Zhang, T. Zhao, F. Hu, J. Sun and B. Shen, Strong textured SmCo5 nanoflakes with ultrahigh coercivity prepared by multistep (three steps) surfactant-assisted ball milling, Scientific Reports 5 (2015) 1-6.

DOI: 10.1038/srep13117

Google Scholar