[1]
N.J. Grant and O. Preston, Dispersion strengthening of copper by internal oxidation Trans AIME 221 (1961) 164.
Google Scholar
[2]
P. Brondsted; and O.T. Sorensen, Preparation of dispersion-hardened copper by internal oxidation, J Mater Sci 13 (1978) 1224–1228.
DOI: 10.1007/bf00544728
Google Scholar
[3]
A.G. Nasibulin, , T.S. Koltsova, L.I. Nasibulina, I.V. Anoshkin, A.V. Semencha, O.V. Tolochko, E.I. Kauppinen, A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles, Acta Materialia, 61 (2013) 1862-1871.
DOI: 10.1016/j.actamat.2012.12.007
Google Scholar
[4]
E.S. Vasil'eva, S.V. Kidalov, V.V. Sokolov, G.G. Klimov, , Puguang Ji. Properties of copper-detonation nanodiamond composites obtained by spray drying, Technical Physics 39 (2013) 137–139.
DOI: 10.1134/s1063785013010410
Google Scholar
[5]
A.I. Rudskoy, T.S. Kol'Tsova, T.V. Larionova, A. N. Smirnov, E.S. Vasil'Eva, A.G. Nasibulin, Gas-phase synthesis and control of structure and thickness of graphene layers on copper substrates, Metal Science and Heat Treatment 58 (2016) 40-45.
DOI: 10.1007/s11041-016-9962-2
Google Scholar
[6]
L.I. Nasibulina, T.S. Koltsova, T. Joentakanen, A.G. Nasibulin, O.V. Tolochko, J.E. M. Malm, M.J. Karppinen, E.I. Kauppinen, Direct synthesis of carbon nanofibers on the surface of copper powder, Carbon 48 (2010) 4556–4577.
DOI: 10.1016/j.carbon.2010.07.028
Google Scholar
[7]
A.I. Rudskoy, T.S. Koltsova, F.M. Shakhov, O.V. Tolochko, V.G. Mikhailov, Effect of hot pressing modes on the structure and properties of an aluminum – carbon nanofibers, composite material, Metal Science and Heat Treatment 56 (2015) 525-530.
DOI: 10.1007/s11041-015-9793-6
Google Scholar
[8]
A.I. Rudskoy, O.V. Tolochko, T.S. Kol'tsova, A.G. Nasibulin, Synthesis of carbon nanofibers on the surface of particles of aluminum powder, Metal Science and Heat Treatment 55 (9-10) (2014) 564-568.
DOI: 10.1007/s11041-014-9670-8
Google Scholar
[9]
L.I. Nasibulina, I.V. Anoshkin, A.V. Semencha, O.V. Tolochko, J.E.M. Malm, M.J. Karppinen, A.G. Nasibulin, , E.I. Kauppinen, Carbon nanofiber/clinker hybrid material as a highly efficient modificator of mortar mechanical properties, Materials Physics and Mechanics, 13 (1) (2012) 77-84.
Google Scholar
[10]
Tolochko, O.V., Klimova, O.G., Ordanian, S.S., Cheong, D.-I., Kim, Y.M. Effects of tungsten nanoparticles additions on the densification of micron size tungsten powder, Reviews on Advanced Materials Science 21 (2009) 192-199.
Google Scholar
[11]
D.W. Lee, O.Tolochko, C.J. Choi, and B.K. Kim, Aluminum Oxide Dispersion Strengthened Copper Produced by Thermo-Chemical Method, Powder Metallurgy 45 (2002) 267-270.
DOI: 10.1179/003258902225002532
Google Scholar
[12]
A. Ray, A.N. Tiwari. Compaction and sintering behaviour of glass–alumina composites, Materials Chemistry and Physics, 67 (2001) 220-225.
DOI: 10.1016/s0254-0584(00)00443-0
Google Scholar
[13]
R. Panelli, F.A. Filho, A study of a new phenomenological compacting equation, Powder Technol. 114 (2001) 255–261.
DOI: 10.1016/s0032-5910(00)00207-2
Google Scholar
[14]
Lenel FV, Powder Metallurgy Principles and Applications. Metal Powder Industry Federation, Princeton, New Jersey, (1980).
Google Scholar
[15]
E.M. Sokolovskaya, and L.S. Gysei, Metallokhimiya (Metal Chemistry). Moskow Univ, Moskow, 1986, in Russian.
Google Scholar