[1]
P.V. Popryadukhin, G.Y. Yukina, E.M. Dobrovolskaya, I.P. Ivankova, V.E. Yudin, Bioresorption of Porous 3D Matrices Based on Collagen in Liver and Muscular Tissue, Cell Tissue Biol. 12 (2018) 247–255.
DOI: 10.1134/s1990519x18030094
Google Scholar
[2]
J.A. Stella, A. D'Amore, W.R. Wagner, M.S. Sacks, On the biomechanical function of scaffolds for engineering loadbearing soft tissues, Acta Biomater . 6 (2010) 2365–2381.
DOI: 10.1016/j.actbio.2010.01.001
Google Scholar
[3]
N.M. Yudintceva, Y.A. Nashchekina, M.I. Blinova, M.A. Shevtsov, N.V. Orlova, A.N. Muraviov, T.I. Vinogradova, M.G. Sheykhov, E.Y. Shapkova, D.V. Emeljannikov, I.A. Yablonskii, P.K. Samusenko, A.L. Mikhrina, A.V. Pakhomov, Experimental bladder regeneration using a poly-L-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells, Int. J. Nanomedicine. 11 (2016) 4521–4533.
DOI: 10.2147/ijn.s111656
Google Scholar
[4]
X. Zhang, X. Li, H. Fan, X. Liu, Preparation and Characterization of Porous β-TCP/PLLA Composites with High β-TCP Content, Key Eng. Mater. 330–332 (2007) 491–494.
DOI: 10.4028/www.scientific.net/kem.330-332.491
Google Scholar
[5]
G.I. Popov, A.E. Kryukov, P.V. Popryadukhin, Y.A. Naschekina, E.M. Ivankova, V.N. Vavilov, N.V. Smirnova, Optimal Methods of Cell Seeding and Cultivation on a Poly(L-lactide) Biodegradable Scaffold, Cell Tissue Biol. 12 (2018) 359–366.
DOI: 10.1134/s1990519x1805005x
Google Scholar
[6]
K.V. Malafeev, O.A. Moskalyuk, V.E. Yudin, V.Y. Elokhovskii, E.N. Popova, L.S. Litvinova, D.N. Suslov, E.M. Ivan'kova, Synthesis and properties of fibers based on polylactide stereocomplexes, Rus. J. Appl. Chem. 90 (2017) 1021–1029.
DOI: 10.1134/s1070427217070011
Google Scholar
[7]
V.V. Matrenichev, P.V. Popryadukhin, A.E. Kryukov, N.V. Smirnova, E.M. Ivan'kova, I.P. Dobrovol'skaya, V.E. Yudin, Properties of Film Materials Based on Composite Nanofibers from Aliphatic Copolyamide and Carbon Nanotubes for Tissue Engineering, Polym. Sci. Ser. A. 60 (2018) 215–221.
DOI: 10.1134/s0965545x18020104
Google Scholar
[8]
G. Chen, T. Ushida, T. Tateish, Scaffold design for tissue engineering., Macromol Biosci. 2 (2002) 67–77.
Google Scholar
[9]
Y.A. Nashchekina, D.M. Darvish, M.I. Blinova, K.E. Kurdyukova, I.M. Zorin, A.Y. Bilibin, E.S. Tsobkallo, Synthesis of D,L-lactide–ε-caprolactone copolymers and preparation of films based on them, Rus. J. Appl. Chem. 91 (2018) 113–120.
DOI: 10.1134/s1070427218010184
Google Scholar
[10]
B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical Applications of Biodegradable Polymers, J Polym Sci B Polym Phys. 49 (2011) 832–864.
DOI: 10.1002/polb.22259
Google Scholar
[11]
Y. Wang, Q. Wen, H.S. Choi, FDA's Regulatory Science Program for Generic PLA/ PLGA-Based Drug Products, Am. Pharm. Rev. (2016) ID 188841.
Google Scholar
[12]
K.J. Cho, D.K. Song, S.H. Oh, Y.J. Koh, S.H. Lee, M.C. Lee, J.H. Lee, Fabrication and Characterization of Hydrophilized Polydioxanone Scaffolds for Tissue Engineering Applications, Key Eng. Mater. 342–343 (2007) 289–292.
DOI: 10.4028/www.scientific.net/kem.342-343.289
Google Scholar
[13]
B. Azimi, P. Nourpanah, M. Rabiee, S. Arbab, Poly (ε-caprolactone) Fiber: An Overview, J. Eng. Fiber. Fabr. 9 (2014) 74–90.
DOI: 10.1177/155892501400900309
Google Scholar
[14]
F. Shady, Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — A Comprehensive Review, Adv. Drug Deliv. Rev. 107 (2016) 367–392.
Google Scholar
[15]
C. Lao, C. Chen, J. Chen, S. Chiang, Y. Lin, K. Chang, Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method, J. Biomed. Mater. Res. 59 (2002) 676–681.
DOI: 10.1002/jbm.10030
Google Scholar
[16]
N.V. Smirnova, N.O. Petrova, I.O. Lebedeva, P.V. Popryadukhin, V.E. Yudin, Tissue reconstruction of skin failures and soft-tissue injuries using regenerative medicine methods, St. Petersbg. Polytech. Univ. J. Phys. Math. 2 (2016) 322–328.
DOI: 10.1016/j.spjpm.2016.11.008
Google Scholar
[17]
P.V. Popryadukhin, G.I. Popov, G.Y. Yukina, I.P. Dobrovolskaya, E.M. Ivan'kova, V.N. Vavilov, V.E. Yudin, Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers, Int. J. Biomater. (2017) 1–10.
DOI: 10.1155/2017/9034186
Google Scholar
[18]
G.I. Popov, A.E. Kryukov, P. V. Popryadukhin, Y.A. Naschekina, E.M. Ivankova, V.N. Vavilov, V.E. Yudin, N. V. Smirnova, Determining optimal methods of cell seeding and cultivation on L-polylactide biodegradable scaffold, Cell Tissue Biol. 60 (2018) 279–286.
DOI: 10.1134/s1990519x1805005x
Google Scholar
[19]
E. Nejati, H. Mirzadeh, M. Zandi, Synthesis and characterization of nanohydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering, Compos. A. 39 (2008) 1589–1596.
DOI: 10.1016/j.compositesa.2008.05.018
Google Scholar
[20]
S. Singare, S.Y. Zhong, Z.Z. Sun, A Method to Fabricate Liver Tissue Engineering Scaffold, J. Biomimetics, Biomater. Tissue Eng. 11 (2011) 73–80.
DOI: 10.4028/www.scientific.net/jbbte.11.73
Google Scholar
[21]
T.D. Roy, J.L. Simon, J.L. Ricci, E.D. Rekow, V.P. Thompson, J.R. Parsosns, Engineered cellular response to scaffold architecture in a rabbit trephine defect, J. Biomed. Mater. Res. 66A (2003) 283–291.
DOI: 10.1002/jbm.a.10569
Google Scholar
[22]
D. Adel-Khattab, F. Giacomini, B. Peleska, R. Gildenhaar, G. Berger, C. Gomes, U. Linow, M. Hardt, J. Günster, A. Houshmand, M. Stiller, K.A. Ghaffar, A. Gamal, M. El-Mofty, C. Knabe, Development of a Synthetic Tissue Engineered 3D Printed Calciumalkaliphosphate-Based Bone Graft with Homogenously Distributed Osteoblasts and Mineralizing Bone Matrix In Vitro, Key Eng. Mater. 720 (2017) 82–89.
DOI: 10.4028/www.scientific.net/kem.720.82
Google Scholar
[23]
N.K. Bawolin, M.G. Li, X.B. Chen, W.J. Zhang, Modeling material-degradation-induced elastic property of tissue engineering scaffolds, J Biomech Eng. 132 (2010) 111001-111007.
DOI: 10.1115/1.4002551
Google Scholar
[24]
I. V. Averianov, V.A. Korzhikov-Vlakh, Y.E. Moskalenko, V.E. Smirnova, T.B. Tennikova, One-pot synthesis of poly(lactic acid) with terminal methacrylate groups for the adjustment of mechanical properties of biomaterials, Mendeleev Commun. 27 (2017) 574–576.
DOI: 10.1016/j.mencom.2017.11.012
Google Scholar