Comparison of Supermacroporous Polyester Matrices Fabricated by Thermally Induced Phase Separation and 3D Printing Techniques

Article Preview

Abstract:

Supermacroporous three-dimensional matrices based on poly-D,L-lactide or polycaprolactone were fabricated by thermally induced phase separation method and 3D printing technique. The morphology and mechanical properties of the resulting matrices were studied with the use of optical and scanning electron microscopy and the uniaxial compression test, respectively. All matrices were characterized with supermacroporous structure suitable for cell penetration. A significant increase in Young's modulus and tensile strength was established for both polymer matrices prepared by 3D printing technique.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P.V. Popryadukhin, G.Y. Yukina, E.M. Dobrovolskaya, I.P. Ivankova, V.E. Yudin, Bioresorption of Porous 3D Matrices Based on Collagen in Liver and Muscular Tissue, Cell Tissue Biol. 12 (2018) 247–255.

DOI: 10.1134/s1990519x18030094

Google Scholar

[2] J.A. Stella, A. D'Amore, W.R. Wagner, M.S. Sacks, On the biomechanical function of scaffolds for engineering loadbearing soft tissues, Acta Biomater . 6 (2010) 2365–2381.

DOI: 10.1016/j.actbio.2010.01.001

Google Scholar

[3] N.M. Yudintceva, Y.A. Nashchekina, M.I. Blinova, M.A. Shevtsov, N.V. Orlova, A.N. Muraviov, T.I. Vinogradova, M.G. Sheykhov, E.Y. Shapkova, D.V. Emeljannikov, I.A. Yablonskii, P.K. Samusenko, A.L. Mikhrina, A.V. Pakhomov, Experimental bladder regeneration using a poly-L-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells, Int. J. Nanomedicine. 11 (2016) 4521–4533.

DOI: 10.2147/ijn.s111656

Google Scholar

[4] X. Zhang, X. Li, H. Fan, X. Liu, Preparation and Characterization of Porous β-TCP/PLLA Composites with High β-TCP Content, Key Eng. Mater. 330–332 (2007) 491–494.

DOI: 10.4028/www.scientific.net/kem.330-332.491

Google Scholar

[5] G.I. Popov, A.E. Kryukov, P.V. Popryadukhin, Y.A. Naschekina, E.M. Ivankova, V.N. Vavilov, N.V. Smirnova, Optimal Methods of Cell Seeding and Cultivation on a Poly(L-lactide) Biodegradable Scaffold, Cell Tissue Biol. 12 (2018) 359–366.

DOI: 10.1134/s1990519x1805005x

Google Scholar

[6] K.V. Malafeev, O.A. Moskalyuk, V.E. Yudin, V.Y. Elokhovskii, E.N. Popova, L.S. Litvinova, D.N. Suslov, E.M. Ivan'kova, Synthesis and properties of fibers based on polylactide stereocomplexes, Rus. J. Appl. Chem. 90 (2017) 1021–1029.

DOI: 10.1134/s1070427217070011

Google Scholar

[7] V.V. Matrenichev, P.V. Popryadukhin, A.E. Kryukov, N.V. Smirnova, E.M. Ivan'kova, I.P. Dobrovol'skaya, V.E. Yudin, Properties of Film Materials Based on Composite Nanofibers from Aliphatic Copolyamide and Carbon Nanotubes for Tissue Engineering, Polym. Sci. Ser. A. 60 (2018) 215–221.

DOI: 10.1134/s0965545x18020104

Google Scholar

[8] G. Chen, T. Ushida, T. Tateish, Scaffold design for tissue engineering., Macromol Biosci. 2 (2002) 67–77.

Google Scholar

[9] Y.A. Nashchekina, D.M. Darvish, M.I. Blinova, K.E. Kurdyukova, I.M. Zorin, A.Y. Bilibin, E.S. Tsobkallo, Synthesis of D,L-lactide–ε-caprolactone copolymers and preparation of films based on them, Rus. J. Appl. Chem. 91 (2018) 113–120.

DOI: 10.1134/s1070427218010184

Google Scholar

[10] B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical Applications of Biodegradable Polymers, J Polym Sci B Polym Phys. 49 (2011) 832–864.

DOI: 10.1002/polb.22259

Google Scholar

[11] Y. Wang, Q. Wen, H.S. Choi, FDA's Regulatory Science Program for Generic PLA/ PLGA-Based Drug Products, Am. Pharm. Rev. (2016) ID 188841.

Google Scholar

[12] K.J. Cho, D.K. Song, S.H. Oh, Y.J. Koh, S.H. Lee, M.C. Lee, J.H. Lee, Fabrication and Characterization of Hydrophilized Polydioxanone Scaffolds for Tissue Engineering Applications, Key Eng. Mater. 342–343 (2007) 289–292.

DOI: 10.4028/www.scientific.net/kem.342-343.289

Google Scholar

[13] B. Azimi, P. Nourpanah, M. Rabiee, S. Arbab, Poly (ε-caprolactone) Fiber: An Overview, J. Eng. Fiber. Fabr. 9 (2014) 74–90.

DOI: 10.1177/155892501400900309

Google Scholar

[14] F. Shady, Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — A Comprehensive Review, Adv. Drug Deliv. Rev. 107 (2016) 367–392.

Google Scholar

[15] C. Lao, C. Chen, J. Chen, S. Chiang, Y. Lin, K. Chang, Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method, J. Biomed. Mater. Res. 59 (2002) 676–681.

DOI: 10.1002/jbm.10030

Google Scholar

[16] N.V. Smirnova, N.O. Petrova, I.O. Lebedeva, P.V. Popryadukhin, V.E. Yudin, Tissue reconstruction of skin failures and soft-tissue injuries using regenerative medicine methods, St. Petersbg. Polytech. Univ. J. Phys. Math. 2 (2016) 322–328.

DOI: 10.1016/j.spjpm.2016.11.008

Google Scholar

[17] P.V. Popryadukhin, G.I. Popov, G.Y. Yukina, I.P. Dobrovolskaya, E.M. Ivan'kova, V.N. Vavilov, V.E. Yudin, Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers, Int. J. Biomater. (2017) 1–10.

DOI: 10.1155/2017/9034186

Google Scholar

[18] G.I. Popov, A.E. Kryukov, P. V. Popryadukhin, Y.A. Naschekina, E.M. Ivankova, V.N. Vavilov, V.E. Yudin, N. V. Smirnova, Determining optimal methods of cell seeding and cultivation on L-polylactide biodegradable scaffold, Cell Tissue Biol. 60 (2018) 279–286.

DOI: 10.1134/s1990519x1805005x

Google Scholar

[19] E. Nejati, H. Mirzadeh, M. Zandi, Synthesis and characterization of nanohydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering, Compos. A. 39 (2008) 1589–1596.

DOI: 10.1016/j.compositesa.2008.05.018

Google Scholar

[20] S. Singare, S.Y. Zhong, Z.Z. Sun, A Method to Fabricate Liver Tissue Engineering Scaffold, J. Biomimetics, Biomater. Tissue Eng. 11 (2011) 73–80.

DOI: 10.4028/www.scientific.net/jbbte.11.73

Google Scholar

[21] T.D. Roy, J.L. Simon, J.L. Ricci, E.D. Rekow, V.P. Thompson, J.R. Parsosns, Engineered cellular response to scaffold architecture in a rabbit trephine defect, J. Biomed. Mater. Res. 66A (2003) 283–291.

DOI: 10.1002/jbm.a.10569

Google Scholar

[22] D. Adel-Khattab, F. Giacomini, B. Peleska, R. Gildenhaar, G. Berger, C. Gomes, U. Linow, M. Hardt, J. Günster, A. Houshmand, M. Stiller, K.A. Ghaffar, A. Gamal, M. El-Mofty, C. Knabe, Development of a Synthetic Tissue Engineered 3D Printed Calciumalkaliphosphate-Based Bone Graft with Homogenously Distributed Osteoblasts and Mineralizing Bone Matrix In Vitro, Key Eng. Mater. 720 (2017) 82–89.

DOI: 10.4028/www.scientific.net/kem.720.82

Google Scholar

[23] N.K. Bawolin, M.G. Li, X.B. Chen, W.J. Zhang, Modeling material-degradation-induced elastic property of tissue engineering scaffolds, J Biomech Eng. 132 (2010) 111001-111007.

DOI: 10.1115/1.4002551

Google Scholar

[24] I. V. Averianov, V.A. Korzhikov-Vlakh, Y.E. Moskalenko, V.E. Smirnova, T.B. Tennikova, One-pot synthesis of poly(lactic acid) with terminal methacrylate groups for the adjustment of mechanical properties of biomaterials, Mendeleev Commun. 27 (2017) 574–576.

DOI: 10.1016/j.mencom.2017.11.012

Google Scholar