The Research and Development of the Technology for Pressure Treatment of the Thermally Expanded Graphite Powders

Article Preview

Abstract:

The paper presents the results of research of compactability processes of thermally expanded graphite powders during rolling. The thermally expanded graphite powders can be used to obtain highly porous and high-density products having different geometric parameters. The rolling method is used to produce long-length products. Strips production of the thermally expanded graphite with a particular thickness, density and physical-mechanical properties can be achieved by controlling the rolling conditions. When implementing the rolling process it is necessary to use plates due to high adhesion of powder to the rolls of the rolling mill. The usage of plates has allowed to develop the technology for the production of single and multilayer strips and evaluate its effectiveness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-290

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Kotov, L.P. Baturova, S.-V.R. Muzafarova, D.A. Safronov, Investigation of the processes of obtaining high-porous electrodes from powder of thermally expanded graphite, Advanced metal materials and technologies (AMMT'2017), July 3-7, 2017, Saint-Petersburg, Russia, pp.121-127.

Google Scholar

[2] S.A. Kotov, S.-V.R. Muzafarova, D.A. Safronov, L.P. Baturova, Investigation of the processes of obtaining high-porous electrodes from powder of thermally expanded graphite. Scientific and technical statements SPbPU. Natural and engineering sciences. Vol. 23, iss. 4, (2017).

Google Scholar

[3] A.V. Yakovlev, A. I. Finaenov, S. L. Zabud'kov, E. V. Yakovleva, Thermally expanded graphite: Synthesis, properties, and prospects for use, Russian Journal of Applied Chemistry 79, iss. 11, pp.1741-1751 (2006).

DOI: 10.1134/S1070427206110012

Google Scholar

[4] O.V. Popova, M.Y. Serbinovskiy, A.G. Abramova, Development of technology for production and application of graphite from hydrolytic lignin, Eur. J. Wood Prod., Springer-Verlag Berlin Heidelberg (2015).

DOI: 10.1134/S107042720805011X

Google Scholar

[5] T.S. Kol'tsova, F.M. Shakhov, A.A. Voznyakovskii, A.I. Lyashkov, O.V. Tolochko, A.G. Nasibulin, A.I. Rudskoi, V.G. Mikhailov. Fabrication of a compacted aluminum-carbon nanofiber material by hot pressing, Technical Physics 59, iss. 11, pp.1626-1630 (2014).

DOI: 10.1134/S1063784214110139

Google Scholar

[6] A.I. Rudskoy, O.V. Tolochko, T.S. Kol'tsova, A.G. Nasibulin. Synthesis of carbon nanofibers on the surface of particles of aluminum powder. Metal science and heat treatment 55, iss. 9-10, pp.564-568 (2014).

DOI: 10.1007/s11041-014-9670-8

Google Scholar

[7] V.N. Tsemenko, O.V. Tolochko, T.S. Kol'tsova, S.V. Ganin, V.G. Mikhailov, Fabrication, Structure and Properties of a Composite from Aluminum Matrix Reinforced with Carbon Nanofibers. Metal Science and Heat Treatment 60, iss. 1-2, pp.24-31 (2018).

DOI: 10.1007/s11041-018-0235-0

Google Scholar

[8] T.S. Koltsova, A.G. Nasibulin, A. Shamshurin, F. Shakhov, V. Mikhailov, Hybrid Aluminum Composite Materials Based on Carbon Nanostructures, Materials Science 21, iss. 3, pp.372-375 (2015).

DOI: 10.5755/j01.ms.21.3.7355

Google Scholar

[9] A.I. Rudskoy, V.N. Tsemenko, S.V. Ganin, A Study of Compaction and Deformation of a Powder Composite Material of the Aluminum–Rare Earth Elements, System, Metal Science and Heat Treatment 56, iss. 9-10, pp.542-547 (2015).

DOI: 10.1007/s11041-015-9796-3

Google Scholar

[10] A.I. Rudskoy, T.S. Kol'tsova, T.V. Larionova, A.N. Smirnov, E.S. Vasil'eva, A.G. Nasibulin, Gas-phase synthesis and control of structure and thickness of graphene layers on copper substrates. Metal Science and Heat Treatment 58, iss. 1-2, pp.40-45 (2016).

DOI: 10.1007/s11041-016-9962-2

Google Scholar

[11] I.N. Kolupaev, A.V. Murahovskiy, V.S. Levitskiy, T.S. Koltsova, M.V. Kozlova, T.V. Larionova, V.O. Sobol, Express Method of Analysis Morphological Parameters of Graphene Coatings on a Copper Substrate, Journal of Nano-and Electronic Physics 8, iss. 4, pp.4013-1 (2016).

DOI: 10.21272/jnep.8(4(1)).04013

Google Scholar

[12] T.S. Kol'tsova, T.V. Larionova, N.N. Shusharina, O.V. Tolochko, Synthesis of carbon nanofibers on copper particles, Technical Physics 60, iss. 8, pp.1214-1219 (2015).

DOI: 10.1134/S1063784215080125

Google Scholar

[13] S.Y. Kondrat'ev, G.Y. Yaroslavskii, B.S. Chaikovskii, Classification of high-damping metallic materials, Strength of Materials 18, iss. 10, pp.1325-1329 (1986).

DOI: 10.1007/BF01523261

Google Scholar

[14] L.I. Nasibulina, T.S. Koltsova, T. Joentakanen, A.G. Nasibulin, O.V. Tolochko, J.E. Malm, M.J. Karppinen, E.I. Kauppinen, Direct synthesis of carbon nanofibers on the surface of copper powder. Carbon 48, iss. 15, pp.4559-4562 (2010).

DOI: 10.1016/j.carbon.2010.07.028

Google Scholar

[15] L.I. Nasibulina, I.V. Anoshkin, A.V. Semencha, O.V. Tolochko, J.E. Malm, M.J. Karppinen, A.G. Nasibulin, E.I. Kauppinen, Carbon nanofiber/clinker hybrid material as a highly efficient modificator of mortar mechanical properties, Materials Physics and Mechanics 13, iss. 1, pp.77-84 (2012).

Google Scholar

[16] V.N. Tsemenko, S.V. Ganin, D.V. Phuc, Research and simulation of the deformation process of dispersion-hardened powder in a capsule, Materials Physics and Mechanics 25, iss. 1, pp.68-76 (2016).

Google Scholar