[1]
ASTM B213 - Standard test methods for flow rate of metal powders using the hall flowmeter funnel.
DOI: 10.1520/b0213-97
Google Scholar
[2]
V.M. Dovbysh, P.V. Zabednov, M.A. Zlenko. Additive technologies and metal articles // Small caster's library №9, (2014), 14-71.
Google Scholar
[3]
Popovich V.A., Borisov E.V., Heurtebise V., Riemslag T., Popovich A.A., Sufiiarov V.S. Creep and thermomechanical fatigue of functionally graded inconel 718 produced by additive manufacturing // Minerals, Metals and Materials Series, Volume Part F12, (2018), 85-97.
DOI: 10.1007/978-3-319-72526-0_9
Google Scholar
[4]
Sufiyarov V.Sh., Borisov E.V., Polozov I.A., Masailo D.V. // Control of structure formation in selective laser melting process // Tsvetnye Metally № 7, (2018), 68-74.
DOI: 10.17580/tsm.2018.07.11
Google Scholar
[5]
Sufiiarov V.Sh., Popovich A.A., Borisov E.V., Polozov I.A. Evolution of structure and properties of heatresistant nickel alloy after selective laser melting, hot isostatic pressing and heat treatment // Tsvetnye Metally №1, (2017), 77-82.
DOI: 10.17580/tsm.2017.01.13
Google Scholar
[6]
Popovich, V.A., Borisov, E.V., Popovich, A.A., Masaylo, D.V., Alzina, L. Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties // Materials and Design, Volume 114, (2017), 441-449.
DOI: 10.1016/j.matdes.2016.10.075
Google Scholar
[7]
Sufiiarov V., Popovich A.A., Polozov, I., Masaylo, D., Orlov, A. Microstructure and mechanical properties of additive manufactured copper alloy // Materials Letters, Volume 179, (2016), 38-41.
DOI: 10.1016/j.matlet.2016.05.064
Google Scholar
[8]
Kempen K., Thijs L., Van Humbeeck J., Kruth J.-P. //Mechanical properties of AlSi10Mg produced by SLM // Physics Procedia № 39, (2012), 439–446.
DOI: 10.1016/j.phpro.2012.10.059
Google Scholar
[9]
C.F. Yolton, F.H. Froes, Conventional titanium powder production// Titanium Powder Metallurgy: Science, Technology and Applications // Elsevier, Waltham, MA (2015), 51–67.
DOI: 10.1016/b978-0-12-800054-0.00002-2
Google Scholar
[10]
W.T. Nachtrab, P.R. Roberts, H.A. Newborn // Powder metallurgy of advanced titanium alloys // Key Engineering Materials 77–78, (1993), 115–140.
DOI: 10.4028/www.scientific.net/kem.77-78.115
Google Scholar
[11]
M. Entezarian, F. Allaire, P. Tsantrizos, R.A.L. Drew // Plasma atomization: a new process for the production of fine, spherical powders // JOM, Volume 48, Issue 6, 53-55.
DOI: 10.1007/bf03222969
Google Scholar
[12]
Tekna Plasma Systems Inc., http://tekna.com/equipment-spheroidizationnanosynthesis-deposition/spheroidization-equipment/ (access date 01/06/2018).
Google Scholar
[13]
Popovich A.A., Razumov N.G., Grigoriev A.V., Samokhin A.V., Sufiiarov V.Sh., Goncharov I.S., Fadeev A.A., Sinaiskii M.A. Fabrication of the Nb–16Si alloy powder for additive technologies by mechanical alloying and spheroidization in electric-arc discharge thermal plasma // Russian Journal of Non-Ferrous Metals, Volume 59, №6, (2018), 671–676.
DOI: 10.3103/s1067821218060160
Google Scholar
[14]
Razumov N.G., Wang Q.-S., Popovich A.A., Shamshurin A.I. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization // AIP Conference Proceedings. 2018. 1946, 020001;.
DOI: 10.1063/1.5030305
Google Scholar
[15]
Razumov N.G., Popovich A.A., Wang Q.-S. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying // Metals and Materials International, Volume 24(2), (2018), 363-370.
DOI: 10.1007/s12540-018-0040-8
Google Scholar
[16]
I.S. Goncharov, N.G. Razumov, A.O. Silin, N.E. Ozerskoi, A.I. Shamshurin, A. Kim, Q.S. Wang, A.A. Popovich, Synthesis of Nb-based powder alloy by mechanical alloying and plasma spheroidization processes for additive manufacturing, Mater. Lett. (2019).
DOI: 10.1016/j.matlet.2019.03.014
Google Scholar
[17]
A.A. Popovich, N.G. Razumov, A. V. Grigoriev, A. V. Samokhin, V.S. Sufiiarov, I.S. Goncharov, A.A. Fadeev, M.A. Sinaiskii, Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma, Russ. J. Non-Ferrous Met. 59 (2018) 671–676.
DOI: 10.3103/s1067821218060160
Google Scholar
[18]
N.G. Razumov, Q.S. Wang, A.A. Popovich, A.I. Shamshurin, Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization, AIP Conference Proceedings 1946, 020001 (2018) 020001.
DOI: 10.1063/1.5030305
Google Scholar
[19]
N.G. Razumov, A.A. Popovich, Q. Wang, Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying, Met. Mater. Int. 24 (2018) 363–370.
DOI: 10.1007/s12540-018-0040-8
Google Scholar