Obtaining Spherical Powders of Grade 5 Alloy for Application in Selective Laser Melting Technology

Article Preview

Abstract:

In this paper, the process of obtaining a spherical powder of titanium alloy of the “Grade 5” brand using inductively coupled argon-helium plasma has been studied. The structure of titanium alloy was studied before and after the spheroidization process. The results of particle size and X-ray fluorescent analysis were also obtained. As a result of the analysis of the structure, it was concluded that the crystallite sizes and microstress values change. Keywords: additive technology, plasmachemical synthesis, spheroidization, titanium alloy, grade 5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

304-310

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASTM B213 - Standard test methods for flow rate of metal powders using the hall flowmeter funnel.

DOI: 10.1520/b0213-97

Google Scholar

[2] V.M. Dovbysh, P.V. Zabednov, M.A. Zlenko. Additive technologies and metal articles // Small caster's library №9, (2014), 14-71.

Google Scholar

[3] Popovich V.A., Borisov E.V., Heurtebise V., Riemslag T., Popovich A.A., Sufiiarov V.S. Creep and thermomechanical fatigue of functionally graded inconel 718 produced by additive manufacturing // Minerals, Metals and Materials Series, Volume Part F12, (2018), 85-97.

DOI: 10.1007/978-3-319-72526-0_9

Google Scholar

[4] Sufiyarov V.Sh., Borisov E.V., Polozov I.A., Masailo D.V. // Control of structure formation in selective laser melting process // Tsvetnye Metally № 7, (2018), 68-74.

DOI: 10.17580/tsm.2018.07.11

Google Scholar

[5] Sufiiarov V.Sh., Popovich A.A., Borisov E.V., Polozov I.A. Evolution of structure and properties of heatresistant nickel alloy after selective laser melting, hot isostatic pressing and heat treatment // Tsvetnye Metally №1, (2017), 77-82.

DOI: 10.17580/tsm.2017.01.13

Google Scholar

[6] Popovich, V.A., Borisov, E.V., Popovich, A.A., Masaylo, D.V., Alzina, L. Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties // Materials and Design, Volume 114, (2017), 441-449.

DOI: 10.1016/j.matdes.2016.10.075

Google Scholar

[7] Sufiiarov V., Popovich A.A., Polozov, I., Masaylo, D., Orlov, A. Microstructure and mechanical properties of additive manufactured copper alloy // Materials Letters, Volume 179, (2016), 38-41.

DOI: 10.1016/j.matlet.2016.05.064

Google Scholar

[8] Kempen K., Thijs L., Van Humbeeck J., Kruth J.-P. //Mechanical properties of AlSi10Mg produced by SLM // Physics Procedia № 39, (2012), 439–446.

DOI: 10.1016/j.phpro.2012.10.059

Google Scholar

[9] C.F. Yolton, F.H. Froes, Conventional titanium powder production// Titanium Powder Metallurgy: Science, Technology and Applications // Elsevier, Waltham, MA (2015), 51–67.

DOI: 10.1016/b978-0-12-800054-0.00002-2

Google Scholar

[10] W.T. Nachtrab, P.R. Roberts, H.A. Newborn // Powder metallurgy of advanced titanium alloys // Key Engineering Materials 77–78, (1993), 115–140.

DOI: 10.4028/www.scientific.net/kem.77-78.115

Google Scholar

[11] M. Entezarian, F. Allaire, P. Tsantrizos, R.A.L. Drew // Plasma atomization: a new process for the production of fine, spherical powders // JOM, Volume 48, Issue 6, 53-55.

DOI: 10.1007/bf03222969

Google Scholar

[12] Tekna Plasma Systems Inc., http://tekna.com/equipment-spheroidizationnanosynthesis-deposition/spheroidization-equipment/ (access date 01/06/2018).

Google Scholar

[13] Popovich A.A., Razumov N.G., Grigoriev A.V., Samokhin A.V., Sufiiarov V.Sh., Goncharov I.S., Fadeev A.A., Sinaiskii M.A. Fabrication of the Nb–16Si alloy powder for additive technologies by mechanical alloying and spheroidization in electric-arc discharge thermal plasma // Russian Journal of Non-Ferrous Metals, Volume 59, №6, (2018), 671–676.

DOI: 10.3103/s1067821218060160

Google Scholar

[14] Razumov N.G., Wang Q.-S., Popovich A.A., Shamshurin A.I. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization // AIP Conference Proceedings. 2018. 1946, 020001;.

DOI: 10.1063/1.5030305

Google Scholar

[15] Razumov N.G., Popovich A.A., Wang Q.-S. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying // Metals and Materials International, Volume 24(2), (2018), 363-370.

DOI: 10.1007/s12540-018-0040-8

Google Scholar

[16] I.S. Goncharov, N.G. Razumov, A.O. Silin, N.E. Ozerskoi, A.I. Shamshurin, A. Kim, Q.S. Wang, A.A. Popovich, Synthesis of Nb-based powder alloy by mechanical alloying and plasma spheroidization processes for additive manufacturing, Mater. Lett. (2019).

DOI: 10.1016/j.matlet.2019.03.014

Google Scholar

[17] A.A. Popovich, N.G. Razumov, A. V. Grigoriev, A. V. Samokhin, V.S. Sufiiarov, I.S. Goncharov, A.A. Fadeev, M.A. Sinaiskii, Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma, Russ. J. Non-Ferrous Met. 59 (2018) 671–676.

DOI: 10.3103/s1067821218060160

Google Scholar

[18] N.G. Razumov, Q.S. Wang, A.A. Popovich, A.I. Shamshurin, Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization, AIP Conference Proceedings 1946, 020001 (2018) 020001.

DOI: 10.1063/1.5030305

Google Scholar

[19] N.G. Razumov, A.A. Popovich, Q. Wang, Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying, Met. Mater. Int. 24 (2018) 363–370.

DOI: 10.1007/s12540-018-0040-8

Google Scholar