Synthesis of the In Situ Nb-Si Composites by Binder Jetting Additive Manufacturing Technology

Article Preview

Abstract:

Synthesis of the Nb-Si in-situ composite was attempted by binder jetting additive manufacturing technology, using Nb powder and liquid Si during infiltration in furnace. The microstructures were examined with scanning electronic microscope, and the phase constituent were analyzed by X-ray diffraction. Furthermore, the effect of using prepared Nb-16Si (at.%) powder mixture as building powder for binder jetting and subsequent melting of internal silicon in furnace on synthesis of the in-situ composite also investigated. After infiltration, the sample mainly consisted of NbSi2 and Si phases. With using of prepared Nb-16Si (at.%) powder and subsequent melting of internal silicon in furnace, microstructure consist of Nbss, Nb3Si, NbSi2 phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-319

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Drawin, J.F. Justin. Advanced Lightweight Silicide and Nitride Based Materials for Turbo-Engine Applications. AerospaceLab (2011).

Google Scholar

[2] Rudskoy AI, Tsemenko VN, Ganin SV. A Study of Compaction and Deformation of a Powder Composite Material of the Aluminum–Rare Earth Elements, System. Metal Science and Heat Treatment. 2015 Jan 1;56(9-10):542-7.

DOI: 10.1007/s11041-015-9796-3

Google Scholar

[3] I. L. Svetlov. High-temperature Nb-Si composites. Part 1 Inorganic Materials: Applied Research August 2011, 2:307.

Google Scholar

[4] Mamonova DV, Mikhailov MD, Sevast'yanova KG, Semencha AV, Tver'yanovich AS, Shakhmin AL. Synthesis of nanocrystalline powders of yttrium aluminum garnet doped by neodymium. Nanotechnologies in Russia. 2011 Aug 1; 6(7-8): 504.

DOI: 10.1134/S1995078011040094

Google Scholar

[5] Orlov, A.V., Masaylo, D.V., Sufiiarov, V.S., Borisov, E.V., Polozov, I.A., Popovich, A.A. A novel approaches to components design additive manufacturing process. IOP Conference Series: Earth and Environmental Science Volume 194, Issue 2, 15 November (2018).

DOI: 10.1088/1755-1315/194/2/022026

Google Scholar

[6] Kuznetsov P.A., Zisman A.A., Petrov S.N., Goncharov, I.S. Structure and mechanical properties of austenitic 316L steel produced by selective laser melting. Russian Metallurgy (Metally) Volume 2016, Issue 10, 1 October 2016, Pages 930-934.

DOI: 10.1134/s0036029516100104

Google Scholar

[7] V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting, Mater. Des. 131 (2017) 12–22.

DOI: 10.1016/j.matdes.2017.05.065

Google Scholar

[8] V.A. Popovich, E. V. Borisov, V. Heurtebise, T. Riemslag, A.A. Popovich, V.S. Sufiiarov, Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing, in: 2018: p.85–97.

DOI: 10.1007/978-3-319-72526-0_9

Google Scholar

[9] V. Kokareva, A. Agapovichev, A. Sotov, V. Smelov, V. Sufiiarov, Multi-criteria planning model of engines parts additive manufacturing, MATEC Web Conf. 224 (2018) 01119.

DOI: 10.1051/matecconf/201822401119

Google Scholar

[10] A. V Agapovichev, A. V Sotov, R.R. Kyarimov, V.P. Alexeev, V.G. Smelov, V.S. Sufiiarov, D. V Masaylo, The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012003.

DOI: 10.1088/1757-899x/441/1/012003

Google Scholar

[11] V. V Kokareva, V.G. Smelov, A. V Agapovichev, A. V Sotov, V.S. Sufiiarov, Development of SLM quality system for gas turbines engines parts production, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012024.

DOI: 10.1088/1757-899x/441/1/012024

Google Scholar

[12] V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.V. Orlov, The Effect of Layer Thickness at Selective Laser Melting, Procedia Eng. 174 (2017) 126–134.

DOI: 10.1016/j.proeng.2017.01.179

Google Scholar

[13] V.S. Sufiiarov, A.A. Popovich, E. V. Borisov, I.A. Polozov, Evolution of structure and properties of heat-resistant nickel alloy after selective laser melting, hot isostatic pressing and heat treatment, Tsvetnye Met. (2017) 77–82.

DOI: 10.17580/tsm.2017.01.13

Google Scholar

[14] V.S. Sufiyarov, E. V. Borisov, I.A. Polozov, D. V. Masailo, Control of structure formation in selective laser melting process, Tsvetnye Met. (2018) 68–74.

DOI: 10.17580/tsm.2018.07.11

Google Scholar

[15] A.V Agapovichev, A.V Sotov, R.R. Kyarimov, V.P. Alexeev, V.G. Smelov, V.S. Sufiiarov, D.V Masaylo, The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012003.

DOI: 10.1088/1757-899X/441/1/012003

Google Scholar

[16] I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing, J. Alloys Compd. 763 (2018) 436–445.

DOI: 10.1016/j.jallcom.2018.05.325

Google Scholar

[17] V.S. Sufiiarov, A.A. Popovich, E. V. Borisov, I.A. Polozov, Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting, Tsvetnye Met. (2016) 81–86.

DOI: 10.17580/tsm.2016.01.14

Google Scholar

[18] A.A. Popovich, V.S. Sufiiarov, I.A. Polozov, E. V. Borisov, D. V. Masaylo, P.N. Vopilovskiy, A.A. Sharonov, R.M. Tikhilov, A. V. Tsybin, A.N. Kovalenko, S.S. Bilyk, Use of Additive Techniques for Preparing Individual Components of Titanium Alloy Joint Endoprostheses, Biomed. Eng. (NY). 50 (2016) 202–205.

DOI: 10.1007/s10527-016-9619-x

Google Scholar

[19] A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41.

DOI: 10.1016/j.matlet.2016.05.064

Google Scholar

[20] A. Grigoriev, I. Polozov, V. Sufiiarov, A. Popovich, In-situ synthesis of Ti 2 AlNb-based intermetallic alloy by selective laser melting, J. Alloys Compd. 704 (2017) 434–442.

DOI: 10.1016/j.jallcom.2017.02.086

Google Scholar

[21] V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties, Mater. Des. 114 (2017) 441–449.

DOI: 10.1016/j.matdes.2016.10.075

Google Scholar

[22] A. V Orlov, D. V Masaylo, V.S. Sufiiarov, E. V Borisov, I.A. Polozov, A.A. Popovich, A novel approaches to components design additive manufacturing process, IOP Conf. Ser. Earth Environ. Sci. 194 (2018) 022026.

DOI: 10.1088/1755-1315/194/2/022026

Google Scholar

[23] Masaylo, D., Popovich, A., Sufiiarov, V., Borisov, E., Polozov, I., Orlov, A. Laser cladding nickel based superalloy inconel 625. METAL 2018 - 27th International Conference on Metallurgy and Materials, Conference Proceedings 2018, Pages 1618-1625.

DOI: 10.1088/1755-1315/194/4/042013

Google Scholar

[24] Razumov, N.G., Popovich, A.A., Wang, Q.S. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying. Metals and Materials International Volume 24, Issue 2, 1 March 2018, Pages 363-370.

DOI: 10.1007/s12540-018-0040-8

Google Scholar

[25] Razumov, N.G., Wang, Q.S., Popovich, A.A., Shamshurin, A.I. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization. AIP Conference Proceedings Volume 1946, 25 April (2018).

DOI: 10.1063/1.5030305

Google Scholar

[26] Grigoriev, A.V, Razumov, N.G., Popovich, A.A., Samokhin, A.V. Obtaining of Nb-16Si spherical powders alloy for additive technologies by mechanical alloying and spheroidization in electric arc discharge thermal plasma. ARPN Journal of Engineering and Applied Sciences Volume 12, Issue 23, 1 December 2017, Pages 6644-6648.

DOI: 10.17073/1997-308x-2017-3-32-40

Google Scholar

[27] A.A. Popovich, N.G. Razumov, A. V. Grigoriev, A. V. Samokhin, V.S. Sufiyarov, I.S. Goncharov, A.A. Fadeev, M.A. Sinaiskii, Fabrication of the Nb – 16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma, Russian Journal of Non-Ferrous Metals, 2018, Vol. 59, No. 6, p.671–676.

DOI: 10.3103/s1067821218060160

Google Scholar

[28] GOST R 57589-2017 Additive processes. Basic principles. Part 2. Materials for additive manufacturing processes. General requirements.

Google Scholar

[29] Massalski TB, Okamoto H, Subramanian PR, Kacprzak L(eds) (1990) Binary alloy phase diagrams. ASM International, Materials Park, OH.

Google Scholar