[1]
S. Drawin, J.F. Justin. Advanced Lightweight Silicide and Nitride Based Materials for Turbo-Engine Applications. AerospaceLab (2011).
Google Scholar
[2]
Rudskoy AI, Tsemenko VN, Ganin SV. A Study of Compaction and Deformation of a Powder Composite Material of the Aluminum–Rare Earth Elements, System. Metal Science and Heat Treatment. 2015 Jan 1;56(9-10):542-7.
DOI: 10.1007/s11041-015-9796-3
Google Scholar
[3]
I. L. Svetlov. High-temperature Nb-Si composites. Part 1 Inorganic Materials: Applied Research August 2011, 2:307.
Google Scholar
[4]
Mamonova DV, Mikhailov MD, Sevast'yanova KG, Semencha AV, Tver'yanovich AS, Shakhmin AL. Synthesis of nanocrystalline powders of yttrium aluminum garnet doped by neodymium. Nanotechnologies in Russia. 2011 Aug 1; 6(7-8): 504.
DOI: 10.1134/S1995078011040094
Google Scholar
[5]
Orlov, A.V., Masaylo, D.V., Sufiiarov, V.S., Borisov, E.V., Polozov, I.A., Popovich, A.A. A novel approaches to components design additive manufacturing process. IOP Conference Series: Earth and Environmental Science Volume 194, Issue 2, 15 November (2018).
DOI: 10.1088/1755-1315/194/2/022026
Google Scholar
[6]
Kuznetsov P.A., Zisman A.A., Petrov S.N., Goncharov, I.S. Structure and mechanical properties of austenitic 316L steel produced by selective laser melting. Russian Metallurgy (Metally) Volume 2016, Issue 10, 1 October 2016, Pages 930-934.
DOI: 10.1134/s0036029516100104
Google Scholar
[7]
V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting, Mater. Des. 131 (2017) 12–22.
DOI: 10.1016/j.matdes.2017.05.065
Google Scholar
[8]
V.A. Popovich, E. V. Borisov, V. Heurtebise, T. Riemslag, A.A. Popovich, V.S. Sufiiarov, Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing, in: 2018: p.85–97.
DOI: 10.1007/978-3-319-72526-0_9
Google Scholar
[9]
V. Kokareva, A. Agapovichev, A. Sotov, V. Smelov, V. Sufiiarov, Multi-criteria planning model of engines parts additive manufacturing, MATEC Web Conf. 224 (2018) 01119.
DOI: 10.1051/matecconf/201822401119
Google Scholar
[10]
A. V Agapovichev, A. V Sotov, R.R. Kyarimov, V.P. Alexeev, V.G. Smelov, V.S. Sufiiarov, D. V Masaylo, The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012003.
DOI: 10.1088/1757-899x/441/1/012003
Google Scholar
[11]
V. V Kokareva, V.G. Smelov, A. V Agapovichev, A. V Sotov, V.S. Sufiiarov, Development of SLM quality system for gas turbines engines parts production, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012024.
DOI: 10.1088/1757-899x/441/1/012024
Google Scholar
[12]
V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.V. Orlov, The Effect of Layer Thickness at Selective Laser Melting, Procedia Eng. 174 (2017) 126–134.
DOI: 10.1016/j.proeng.2017.01.179
Google Scholar
[13]
V.S. Sufiiarov, A.A. Popovich, E. V. Borisov, I.A. Polozov, Evolution of structure and properties of heat-resistant nickel alloy after selective laser melting, hot isostatic pressing and heat treatment, Tsvetnye Met. (2017) 77–82.
DOI: 10.17580/tsm.2017.01.13
Google Scholar
[14]
V.S. Sufiyarov, E. V. Borisov, I.A. Polozov, D. V. Masailo, Control of structure formation in selective laser melting process, Tsvetnye Met. (2018) 68–74.
DOI: 10.17580/tsm.2018.07.11
Google Scholar
[15]
A.V Agapovichev, A.V Sotov, R.R. Kyarimov, V.P. Alexeev, V.G. Smelov, V.S. Sufiiarov, D.V Masaylo, The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012003.
DOI: 10.1088/1757-899X/441/1/012003
Google Scholar
[16]
I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing, J. Alloys Compd. 763 (2018) 436–445.
DOI: 10.1016/j.jallcom.2018.05.325
Google Scholar
[17]
V.S. Sufiiarov, A.A. Popovich, E. V. Borisov, I.A. Polozov, Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting, Tsvetnye Met. (2016) 81–86.
DOI: 10.17580/tsm.2016.01.14
Google Scholar
[18]
A.A. Popovich, V.S. Sufiiarov, I.A. Polozov, E. V. Borisov, D. V. Masaylo, P.N. Vopilovskiy, A.A. Sharonov, R.M. Tikhilov, A. V. Tsybin, A.N. Kovalenko, S.S. Bilyk, Use of Additive Techniques for Preparing Individual Components of Titanium Alloy Joint Endoprostheses, Biomed. Eng. (NY). 50 (2016) 202–205.
DOI: 10.1007/s10527-016-9619-x
Google Scholar
[19]
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41.
DOI: 10.1016/j.matlet.2016.05.064
Google Scholar
[20]
A. Grigoriev, I. Polozov, V. Sufiiarov, A. Popovich, In-situ synthesis of Ti 2 AlNb-based intermetallic alloy by selective laser melting, J. Alloys Compd. 704 (2017) 434–442.
DOI: 10.1016/j.jallcom.2017.02.086
Google Scholar
[21]
V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties, Mater. Des. 114 (2017) 441–449.
DOI: 10.1016/j.matdes.2016.10.075
Google Scholar
[22]
A. V Orlov, D. V Masaylo, V.S. Sufiiarov, E. V Borisov, I.A. Polozov, A.A. Popovich, A novel approaches to components design additive manufacturing process, IOP Conf. Ser. Earth Environ. Sci. 194 (2018) 022026.
DOI: 10.1088/1755-1315/194/2/022026
Google Scholar
[23]
Masaylo, D., Popovich, A., Sufiiarov, V., Borisov, E., Polozov, I., Orlov, A. Laser cladding nickel based superalloy inconel 625. METAL 2018 - 27th International Conference on Metallurgy and Materials, Conference Proceedings 2018, Pages 1618-1625.
DOI: 10.1088/1755-1315/194/4/042013
Google Scholar
[24]
Razumov, N.G., Popovich, A.A., Wang, Q.S. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying. Metals and Materials International Volume 24, Issue 2, 1 March 2018, Pages 363-370.
DOI: 10.1007/s12540-018-0040-8
Google Scholar
[25]
Razumov, N.G., Wang, Q.S., Popovich, A.A., Shamshurin, A.I. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization. AIP Conference Proceedings Volume 1946, 25 April (2018).
DOI: 10.1063/1.5030305
Google Scholar
[26]
Grigoriev, A.V, Razumov, N.G., Popovich, A.A., Samokhin, A.V. Obtaining of Nb-16Si spherical powders alloy for additive technologies by mechanical alloying and spheroidization in electric arc discharge thermal plasma. ARPN Journal of Engineering and Applied Sciences Volume 12, Issue 23, 1 December 2017, Pages 6644-6648.
DOI: 10.17073/1997-308x-2017-3-32-40
Google Scholar
[27]
A.A. Popovich, N.G. Razumov, A. V. Grigoriev, A. V. Samokhin, V.S. Sufiyarov, I.S. Goncharov, A.A. Fadeev, M.A. Sinaiskii, Fabrication of the Nb – 16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma, Russian Journal of Non-Ferrous Metals, 2018, Vol. 59, No. 6, p.671–676.
DOI: 10.3103/s1067821218060160
Google Scholar
[28]
GOST R 57589-2017 Additive processes. Basic principles. Part 2. Materials for additive manufacturing processes. General requirements.
Google Scholar
[29]
Massalski TB, Okamoto H, Subramanian PR, Kacprzak L(eds) (1990) Binary alloy phase diagrams. ASM International, Materials Park, OH.
Google Scholar