Research of Regularities of Aerosol Synthesis of Iron Oxide Particles

Article Preview

Abstract:

The influence of the concentration of the initial solution on the size and composition of the particles obtained by the method of ultrasonic spray pyrolysis (USP) was investigated. An aqueous solution of Fe (NО3)3·9Н2О, the concentration of which varied in the range of 0,0025–0,03 mol/l, was used as the starting material. As a result of the process, iron oxide particles were obtained, the average size of which varied from 123 to 292 nm. Based on FTIR and XRD, powders consist of several phases and have crystalline inclusions α-Fe2O3, β-Fe2O3, and γ-Fe2O3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-333

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.I. Bobkova, A.A. Chernysh, A.A. Masailo, A.A. Deev, V.N. Klimov, M.A. Yurkov, Structure and properties of the bronze-based functional coating obtained by gas-dynamic and microplasma spraying, Inorganic Materials: Applied Research. 8 (2017) 861-869.

DOI: 10.1134/s2075113317060028

Google Scholar

[2] L.N. Blinov, A.V. Semencha, N.I. Krylov, Preparation of Pure Amorphous As2S3 Films of a Stoichiometric Composition, Glass Physics and Chemistry. 44 (2018) 51-53.

DOI: 10.1134/s1087659618010042

Google Scholar

[3] G. Turichin, E. Zemlyakov, O. Klimova, K. Babkin, Hydrodynamic instability in high-speed direct laser deposition for additive manufacturing, Physics Procedia. 83 (2016) 674-683.

DOI: 10.1016/j.phpro.2016.09.001

Google Scholar

[4] D.V. Mamonova, M.D. Mikhailov, K. G. Sevast'yanova, A. Semencha, Synthesis of nanocrystalline powders of yttrium aluminum garnet doped by neodymium, Nanotechnologies in Russia, 6 (2011) 504-509.

DOI: 10.1134/s1995078011040094

Google Scholar

[5] E .Vasilyeva, A. Nasibulin, O. Tolochko, A. Rudskoy, A. Sachdev, X. Xiao, Application of WSe2 nanoparticles synthesized by chemical vapor condensation method for Li-ion battery anodes, ZeitschriftfürPhysikalischeChemie, 229 (2015) 1429-1437.

DOI: 10.1515/zpch-2015-0573

Google Scholar

[6] T.I. Bobkova, R.Y. Bystrov, B.V. Farmakovsky, A.G. Astashov, M.A. Sinaisky, Plasma chemical synthesis of aluminum oxide nanopowders and their use as reinforcing components in microplasma sputtering of coatings, Inorganic Materials: Applied Research, 6 (2015) 591-594.

DOI: 10.1134/s2075113315060039

Google Scholar

[7] S. Deguchi, H. Matsuda, M. Hasatani, N. Kobayashi, Formation mechanism of TiO2 fine particles prepared by the spray pyrolysis method, Drying Technology, 12 (1994) 577-591.

DOI: 10.1080/07373939408959978

Google Scholar

[8] B. Kırcı, B. Ebin, S. Gürmen, Production and characterization of submicron hematite (α−Fe2O3) particles by ultrasonic spray pyrolysis method, AIP Conference Proceedings (2013).

DOI: 10.1063/1.4849273

Google Scholar

[9] R. Lang, Ultrasonic Atomization of Liquid, J.Acoust.Soc.Am, 34 (1962).

Google Scholar

[10] Y. Wang, A. Muramatsu, T. Sugimoto, FTIR analysis of well-defined α-Fe2O3 particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134 (1998) 281-297.

DOI: 10.1016/s0927-7757(97)00102-7

Google Scholar

[11] A. Kumar, A. Singhal, Synthesis of colloidal β-Fe2O3 nanostructures—influence of addition of Co2+ on their morphology and magnetic behavior, Nanotechnology, 18 (2007) 475703.

DOI: 10.1088/0957-4484/18/47/475703

Google Scholar

[12] S. Veintemillas-Verdaguer, M.P. Morales, C.J. Serna, Continuous production of γ-Fe2O3 ultrafine powders by laser pyrolysis, Materials Letters, 35 (1998) 227-231.

DOI: 10.1016/s0167-577x(97)00251-6

Google Scholar

[13] S. Arunmetha, P. Manivasakan, A. Karthik, N.D. Babu, S.R. Srither, V. Rajendran, Effect of processing methods on physicochemical properties of titania nanoparticles produced from natural rutile sand, Advanced Powder Technology,24 (2013) 972-979.

DOI: 10.1016/j.apt.2013.01.011

Google Scholar

[14] A Kumar, A Singhal, Optical and magnetic behavior of Ag encapsulated β-Fe2O3 core–shell hollow nanotubes, Materials Chemistry and Physics, 131 (2011), 230-240.

DOI: 10.1016/j.matchemphys.2011.09.016

Google Scholar

[15] N. Pailhé, A. Wattiaux, M. Gaudon, A.Demourgues, Correlation between structural features and vis–NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A= Mg, Zn), Journal of Solid State Chemistry, 181 (2008) 1040-1047.

DOI: 10.1016/j.jssc.2008.02.009

Google Scholar

[16] V. Petkov, P.D. Cozzoli, R. Buonsanti, R. Cingolani, Y. Ren, Size, shape, and internal atomic ordering of nanocrystals by atomic pair distribution functions: a comparative study of γ-Fe2O3 nanosized spheres and tetrapods, Journal of the American Chemical Society, 131 (2009) 14264-14266.

DOI: 10.1021/ja9067589

Google Scholar

[17] D. Levy, R. Giustetto, A. Hoser, Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study, Physics and Chemistry of Minerals, 39 (2012), 169-176.

DOI: 10.1007/s00269-011-0472-x

Google Scholar

[18] T. Danno, D. Nakatsuka, Y. Kusano, H. Asaoka, M. Nakanishi, T. Fujii, J. Takada, Crystal structure of β-Fe2O3 and topotactic phase transformation to α-Fe2O3, Crystal Growth & Design, 13 (2013) 770-774.

DOI: 10.1021/cg301493a

Google Scholar