[1]
O.V. Velichko, S.Y. Ivanov, V.A. Karkhin, P.N. Khomich, V.A. Lopota, I.D. Makhin, Methods of overlapping closed joints in friction stir welding of thin wall structures made of aluminium alloys, Welding International 30 (10) (2016) 797-801.
DOI: 10.1080/09507116.2016.1148406
Google Scholar
[2]
S.Y. Ivanov, O.V. Panchenko, V.G. Michailov, Comparative Analysis of Non-Uniformity of Mechanical Properties of Welded Joints of Al–Mg–Si Alloys During Friction Stir Welding and Laser Welding, Metal Science and Heat Treatment 60 (5-6) (2018) 393-398.
DOI: 10.1007/s11041-018-0289-z
Google Scholar
[3]
S.Y. Kondrat'ev, Y.N. Morozova, Y.A. Golubev, C. Hantelmann, A.A. Naumov, V.G. Michailov, Microstructure and Mechanical Properties of Welds of Al – Mg – Si Alloys After Different Modes of Impulse Friction Stir Welding, Metal Science and Heat Treatment 59 (11-12) (2018) 697-702.
DOI: 10.1007/s11041-018-0213-6
Google Scholar
[4]
Rudskoy A.I., Naumov A.A., Chernikov E.V. Friction stir processing of metals is a new method of intensive plastic deformation, Tsvetnye Metally 4 (2014) 36-40.
Google Scholar
[5]
A.I. Rudskoy, G.E. Kodzhaspirov, J. Kliber, Ch. Apostolopoulos, Advanced metallic materials and processes, Materials Physics and Mechanics 25 (1) (2016) 1-8.
Google Scholar
[6]
R.A. Parshikov, A.I. Rudskoy, A.M. Zolotov and O.V. Tolochko, Analysis of specimen plastic flow features during severe plastic deformation, Reviews on Advanced Materials Science 45 (1-2) (2016) 67-75.
Google Scholar
[7]
A.I. Rudskoy, V.N. Tsemenko, S.V. Ganin, A Study of Compaction and Deformation of a Powder Composite Material of the Aluminum–Rare Earth Elements, System, Metal Science and Heat Treatment 56 (9-10) (2015) 542-547.
DOI: 10.1007/s11041-015-9796-3
Google Scholar
[8]
D.J. Abson, P.L. Threadgill, W.M. Thomas, Friction joining. UK Patent Application GB 2 270 864 A.
Google Scholar
[9]
A.W. Batchelor, S. Jana, C.P. Koh, C.S. Tan, Journal of Materials Processing Technology 57(1996) 172–181.
Google Scholar
[10]
G.K. Padhy, C.S. Gao, Friction stir based welding and processing technologies – process, parameters, microstructures and applications: A review. Journal of Materials Processing Technology 31(1) (2018), 1-38.
DOI: 10.1016/j.jmst.2017.11.029
Google Scholar
[11]
A.I. Rudskoy, G.E. Kodzhaspirov, J. Kliber, Ch. Apostolopoulos, Advanced metallic materials and processes, Materials Physics and Mechanics 25 (1) (2016) 1-8.
Google Scholar
[12]
J. Gandra, H. Krohn, R.M. Miranda, P.Vilaca, L. Quintino, J.F. dos Santos, Friction surfacing – A review. Journal of Materials Processing Technology 214 (2014), 1062-1093.
DOI: 10.1016/j.jmatprotec.2013.12.008
Google Scholar
[13]
G.M. Bedforda, V.I. Vitanov b, I.I Voutchkov, On the thermo-mechanical events during friction surfacing of high speed steels. Surface and Coatings Technology 141 (2001) 34-39.
DOI: 10.1016/s0257-8972(01)01129-x
Google Scholar
[14]
K. Xue, Zh. Zhang, Y. Xia, Y. Lu, Coupled thermo-mechanical FEM analysis of twist compression deformation process. Trans. Nonferrous Met. Soc. China, Vol. 7 #4, Dec. 1997, 102-106.
Google Scholar
[15]
X. Liu, J. Yao, X. Wang, Z. Zou, Sh. Ou, Finite difference modeling on the temperature field of consumable-rod in friction surfacing. Journal of materials processing technology 209 (2009), 1392-1399.
DOI: 10.1016/j.jmatprotec.2008.03.067
Google Scholar
[16]
J.S. Yao, A study on the physical process of consumable-rod friction welding. Ph.D. Dissertation, Beijing University of Aeronautics and Astronautics.
Google Scholar
[17]
J. Zhang, Y. Shen, Bo Li Haisheng, X. Yao, B. Kuang, J. Gao, Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy. College of Materials Science and Technology.
DOI: 10.1016/j.matdes.2014.03.043
Google Scholar
[18]
I. Golubev, A. Naumov and V. Michailov, Developing finite element model of the friction stir welding for temperature calculation, METAL 2014 - 23rd International Conference on Metallurgy and Materials, Conference Proceedings. (2014) 1242-1248.
Google Scholar
[19]
I. Golubev, I. Morozova, A. Naumov, C. Hantelmann, N. Doynov, V. Michailov, Numerical simulation and experimental investigation on impulse friction stir welding of 6082-T6 aluminum alloy, Materials Science and Technology Conference and Exhibition 2017 (2) (2017) 987-994.
DOI: 10.7449/2017/mst_2017_987_994
Google Scholar
[20]
I.A. Golubev, E.V. Chernikov, A.A. Naumov, V.G. Michailov, Temperature distribution and welding distortion measurements after FSW of Al 6082-T6 sheets, Friction Stir Welding and Processing VII (2016) 289-295.
DOI: 10.1002/9781119093343.ch31
Google Scholar
[21]
I.A. Golubev, A.A. Naumov, E.V. Chernikov, V.G. Michailov, Research of temperature distribution during friction stir welding of 2 MM AW 6082 sheets, METAL 2015 - 24rd International Conference on Metallurgy and Materials, Conference Proceedings. (2015) 1433-1438.
DOI: 10.1002/9781119093343.ch31
Google Scholar
[22]
E.V. Chernikov, A.A. Naumov, I.A. Golubev, V.G. Michailov, Numerical simulation and microstructure analysis of friction stir welded Al 6082, METAL 2015 - 24rd International Conference on Metallurgy and Materials, Conference Proceedings. (2015) 1423-1428.
DOI: 10.1007/978-3-319-48173-9_31
Google Scholar
[23]
C. Hamilton, S. Dymek, A. Sommers, A thermal model of friction stir welding in aluminum alloys. International Journal of Machine Tools and Manufacture, 48(10), 1120–1130.
DOI: 10.1016/j.ijmachtools.2008.02.001
Google Scholar
[24]
N.G. Kolbasnikov, V.V. Mishin, I.A. Shishov et al., Development of nondestructive warm rolling schedules for nanocrystalline beryllium using mathematical simulation, Russian Metallurgy (Metally) 10 (2014) 785-792.
DOI: 10.1134/s0036029514100048
Google Scholar
[25]
V.V. Mishin, Y.A. Bezobrazov, I.A. Shishov et al., Non-destructive hot rolling schedules development for low Mn/S ratio 1008 steel, METAL 2014 - 23rd International Conference on Metallurgy and Materials (2014) 370-376.
Google Scholar