[1]
G.P. Karzov [et al.], Patent 2206632 IPC C22 C38/50 C22 C38/58 (2003).
Google Scholar
[2]
Kravtsov D.V., Kokhtev S.A., Mescherinova I.A., Effect of alloying of ferritic-martensitic steels on their corrosion resistance in liquid lead, Questions of atomic science and technology. 3 (2004) 23-25.
Google Scholar
[3]
Filippov Yu. I., Sagaradze V.V., Zavalishin V. A., Acoustic detection of stress-corrosion cracking of nitrogen austenitic steels, The Physics of Metals and Metallography. 115 (2014) 586-599.
DOI: 10.1134/s0031918x14060076
Google Scholar
[4]
Muller G., Schumacher G., Zimmermann F. Investigation of Steels / Steam, Journal of Nuclear Materials. 278 (2000) 85 - 95.
Google Scholar
[5]
Sokolov D., Vasilyev A., Ogoltcov A., Modeling of the microstructure with microstructure, In METAL 2014: 23rd Int. Conference on Metallurgy and Materials. (2014) 482-487.
Google Scholar
[6]
Yakushin V.L., Increasing the corrosion resistance of steel EP823 in liquid lead by treating it with streams of wax-temperature pulsed plasma, Issues of Atomic Science and Technology. 3 (2005) 128-133.
Google Scholar
[7]
Alman D.E., Wearing iron-aluminide intermetallic-based alloys and composites, Wear. 251 (2001) 875–884.
DOI: 10.1016/s0043-1648(01)00745-1
Google Scholar
[8]
Dresvyannikov A.F. Kolpakov M.E., Synthesis of the intermetallic compound Fe3Al, Bulletin of Kazan Technological University. 5 (2010) 7-9.
Google Scholar
[9]
Hansen M., Anderko K., Structures of double alloys, Per. from English. 1 (1952) 107.
Google Scholar
[10]
Gerashchenkov D., Farmakovskii B., Bobkova T ., Klimov V., Features of the High-Speed Melt Quenching, Metallurgist. 60 (2017) 1103-1112.
DOI: 10.1007/s11015-017-0413-0
Google Scholar
[11]
Bobkova, T. I., Bystrov R. Yu., Farmakovskii B. V., Astashov A. G., Sinaisky M. A., Plasma synthesis of aluminum oxide nanopowders, Inorganic Materials: Applied Research. 6 (2015) 591-594.
DOI: 10.1134/s2075113315060039
Google Scholar
[12]
Bobkova T.I., Farmakovskii B.V., Bogdanov S.P., Creation of composite nanostructured surface-reinforced powder materials used for coatings with enhanced hardness, Inorganic Materials: Applied Research. 7 (2016) 855–862.
DOI: 10.1134/s2075113316060034
Google Scholar
[13]
Markov M.A., Bykova A.D., Krasikov A.V., Farmakovskii B.V., Gerashchenkov D.A. Formation of Wear- and Corrosion-Resistant Coatings by the Microarc Oxidation of Aluminum, Refractories and Industrial Ceramics. 58 (2018) 634-639.
DOI: 10.1007/s11148-018-0207-3
Google Scholar
[14]
Mirzoev R.A., Davydov, S.I. Vystupov, Trajectories of migrating tracers, Electrochimica Acta. 243 (2017) 270-281.
DOI: 10.1016/j.electacta.2017.05.025
Google Scholar
[15]
Kurushkin M., Kurushkin D., Acid – Base Behavior of 100 Element Oxides: Visual and Mathematical Representations, Journal of Chemical Education 95 (2018) 678-681.
DOI: 10.1021/acs.jchemed.7b00576
Google Scholar
[16]
Bobkova T.I., Chernysh A.A., Masailo A.A. [et al.], Structure and properties of the bronze-based functional coating obtained by gas-dynamic and microplasma spraying, Inorganic Materials: Applied Research. 8 (2017) 861–869.
DOI: 10.1134/s2075113317060028
Google Scholar
[17]
Mirzoev R.A., Davydov A.D., [et al.], Conditions for self-ordering of porous structure of anodic aluminum oxide in weak and strong acids, Electrochimica Acta. 294 (2019) 276–285.
DOI: 10.1016/j.electacta.2018.10.041
Google Scholar
[18]
State diagrams of double metal systems, ed. Lyakisheva N.P. Engineering. (1996-2000) 203.
Google Scholar