Vibrothermographical Simulation of Cracked Structures

Article Preview

Abstract:

This research performs finite element simulations of cracked structures undergoing the vibrothermography process, which is an experimental technique gaining popularity for structural damage identification. In vibrothermography, a vibration shaker is used to excite the test structure. If the structure has cracks or defects, frictional heat will be generated at those cracks and thermal images can be recorded by an infrared camera. The vibrothermographical simulation includes modal analysis, transient vibration and transient thermal analysis. Two simulated examples are presented in this work: the first one is an aluminum-alloy plate with a hairline crack; the second example is a brake rotor with a hairline crack on one of the bolt-hole surfaces. Although higher modes are usually more difficult to excite, they may be used in vibrothermography to detect structural cracks more efficiently.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-104

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Gao, W.Q. Meeker and D. Mayton: Reliability Engineering and System Safety Vol. 131 (2014), p.229.

Google Scholar

[2] M. Krishnapillai, R. Jones, I.H. Marshall, M. Bannister and N. Rajic: Composite Structures Vol. 67 (2005), p.149.

DOI: 10.1016/j.compstruct.2004.09.015

Google Scholar

[3] A. Mendioroz, A. Castelo, R. Celorrio and A. Salazar: NDT&E International Vol. 66 (2014), p.8.

Google Scholar

[4] S.D. Holland, C. Uhl, Z. Ouyang, T. Bantel, M. Li, W.Q. Meeker, J. Lively, L. Brasche and D. Eisenmann: NDT&E International Vol. 44 (2011), p.775.

DOI: 10.1016/j.ndteint.2011.07.006

Google Scholar

[5] H. Waisman, E. Chatzi and A.W. Smyth: International Journal for Numerical Methods in Engineering Vol. 82 (2010), p.303.

Google Scholar

[6] S.M. Seyedpoor: Int. Journal of Non-Linear Mechanics Vol. 47 (2012), p.1.

Google Scholar

[7] F. Kang, J.J. Li and Q. Xu: Applied Soft Computing Vol. 12 (2012), p.2329.

Google Scholar

[8] A.S. Rizi, S. Hedayatrasa, X. Maldague and T. Vukhanh: Infrared Physics & Technology Vol. 61 (2013), p.101.

DOI: 10.1016/j.infrared.2013.07.011

Google Scholar

[9] A.J. García-Palencia and E. Santini-Bell: Computer-Aided Civil and Infrastructure Engineering Vol. 28 (2013), p.509.

Google Scholar

[10] F. Mabrouki, M. Thomas, M. Genest and A. Fahr: NDT&E International Vol. 42 (2009), p.345.

Google Scholar

[11] J. Renshaw, J.C. Chen, S.D. Holland and R.B. Thompson: NDT&E International Vol. 44 (2011), p.736.

Google Scholar

[12] T. Sujidkul and Z. Xia: Composites: Part B Vol. 43 (2012), p.1631.

Google Scholar

[13] J. Renshaw, S.D. Holland, R.B. Thompson and J. Anderegg: International Journal of Fatigue Vol. 33 (2011), p.849.

Google Scholar

[14] R. Montanini and F. Freni: NDT&E International Vol. 58 (2013), p.43.

Google Scholar

[15] A.S. Rizi, S. Hedayatrasa, X. Maldague and T. Vukhanh: Infrared Physics & Technology Vol. 61 (2013), p.101.

DOI: 10.1016/j.infrared.2013.07.011

Google Scholar