Hybrid Equilibrium Finite Element Formulation for Cohesive Crack Propagation

Article Preview

Abstract:

Equilibrium elements have been developed in hybrid formulation with independent equilibrated stress fields on each element. Traction equilibrium condition, at sides between adjacent elements and at sides of free boundary, is enforced by use of independent displacement laws at each side, assumed as Lagrangian parameters. The displacement degrees of freedom belongs to the element side, where an extrinsic interface can be embedded. The embedded interface is defined by the same stress fields of the hybrid equilibrium element and it does not require any additional degrees of freedom. The extrinsic interface is developed in the consistent thermodynamic framework of damage mechanics with internal variable and produces a bilinear response in a traction separation diagram. The proposed extrinsic interface can be modelled on every single element side or can be modelled only on a set of predefined element sides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-109

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xu, X. P., Needleman, A., (1993). Void nucleation by inclusion debonding in a crystal matrix. Modell. Sim. Mater. Sci. Eng. Vol. 2, pp.417-418.

Google Scholar

[2] Alfano, G., Sacco, E., 2006. Combining interface damage and friction in a cohesive-zone model. Int. J. Num. Meth. Eng. Vol. 68 (5), pp.542-582.

DOI: 10.1002/nme.1728

Google Scholar

[3] Parrinello, F., Failla, B., Borino, G., (2009). Cohesive-frictional interface constitutive model. Int. J. Solids Structures Vol. 46 (13), pp.2680-2692.

DOI: 10.1016/j.ijsolstr.2009.02.016

Google Scholar

[4] Parrinello, F., Marannano, G., Borino, G., Pasta, A., (2013). Frictional effect in mode II delamination: Experimental test and numerical sim.. Eng.Fract.Mech. Vol.110, pp.258-269.

DOI: 10.1016/j.engfracmech.2013.08.005

Google Scholar

[5] Parrinello, F., Marannano, G., Borino, G., (2016). A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination. Eng.Frac.Mech. Vol. 153, pp.61-79.

DOI: 10.1016/j.engfracmech.2015.12.001

Google Scholar

[6] Parrinello, F., Borino, G., (2019). Non associative damage interface model for mixed mode delamination and frictional contact. E.Jour.Mech.A/Sol. Vol.76 pp.108-122.

DOI: 10.1016/j.euromechsol.2019.03.012

Google Scholar

[7] Parrinello, F., Borino, G., (2018). Integration of finite displacement interface element in reference and current configurations. Meccanica Vol. 53 (6), pp.1455-1468.

DOI: 10.1007/s11012-017-0804-0

Google Scholar

[8] Parrinello, F., Marannano, G., (2018). Cohesive delamination and frictional contact on joining surface via XFEM. AIMS Materials Science Vol. 5 (1), pp.127-144.

DOI: 10.3934/matersci.2018.1.127

Google Scholar

[9] Parrinello, F., (2018). Analytical solution of the 4ENF test with interlaminar frictional effects and evaluation of mode II delamination toughness. Jour. of Eng.Mechanics Vol. 144 (4).

DOI: 10.1061/(asce)em.1943-7889.0001433

Google Scholar

[10] Lorenz, E. (2008) A mixed interface finite element for CZM. CMAME Vol. 198, p.302–317.

Google Scholar

[11] Gulizzi, V., Rycroft, C., Benedetti, I., (2018). Modelling intergranular and transgranular micro-cracking in polycrystalline materials. CMAME Vol. 329, pp.168-194.

DOI: 10.1016/j.cma.2017.10.005

Google Scholar

[12] Benedetti, I., V.Gulizzi, A.Milazzo. Grain-boundary modelling of hydrogen assisted intergranular stress corrosion cracking. Mechanics of Materials Vol. 117 (2018): pp.137-151.

DOI: 10.1016/j.mechmat.2017.11.001

Google Scholar

[13] Benedetti, Ivano, Vincenzo Gulizzi. A grain-scale model for high-cycle fatigue degradation in polycrystalline materials." International Journal of Fatigue 116 (2018): 90-105.

DOI: 10.1016/j.ijfatigue.2018.06.010

Google Scholar

[14] Gulizzi,V., A.Milazzo, I.Benedetti. (2015) An enhanced grain-boundary framework for computational homogenization and micro-cracking sim.. Comp.Mech. Vol.56.4: pp.631-651.

DOI: 10.1007/s00466-015-1192-8

Google Scholar

[15] Mergheim, J., Kuhl, E., Steinmann, P., (2004). A hybrid discontinuous galerkin/interface method for the comput. modelling of failure. Com.Num. Met. Eng. Vol.20 (7), pp.511-519.

DOI: 10.1002/cnm.689

Google Scholar

[16] Vinh Phu Nguyen, (2014) Discontinuous Galerkin/extrinsic cohesive zone modeling: Implem-entation caveats and applications in comput. Frac. mech.. Eng.Frac.Mech. Vol.128, p.37–68.

DOI: 10.1016/j.engfracmech.2014.07.003

Google Scholar

[17] de Veubeke, F., (1964). Upper and lower bounds in m.s.a. AGARDograf Vol.72, pp.165-201.

Google Scholar

[18] de Veubeke B.F., (1965). Stress Analysis. Zienkiewicz, Holister, Cp.9. Wiley: London.

Google Scholar

[19] De Almeida J.P.M., P. O., (2006). Upper bounds of the error in local quantities using equilibrated and compatible fin. elem.. CMAME. Vol.195, pp.279-296.

DOI: 10.1016/j.cma.2004.09.012

Google Scholar

[20] M. Kempeneers, J. D., Beckers, P., (2010). Pure equilibrium tetrahedral finite elements for global error estimation by dual analysis. Int. J. Numer. Meth. Engng Vol.81, pp.513-536.

DOI: 10.1002/nme.2703

Google Scholar

[21] Parrinello F., (2013) Restraining approach for the spurious kinematic modes in hybrid equilibrium element. Comput. Mech. Vol.52: p.885–901.

DOI: 10.1007/s00466-013-0851-x

Google Scholar

[22] Borino, G., Fratini, L., Parrinello, F., (2009). Mode I failure modelling of friction stir welding joints. Intern. Journal of Adv. Manufact. Technology, Vol.41 (5-6), pp.498-503.

DOI: 10.1007/s00170-008-1498-1

Google Scholar

[23] F. Parrinello, I. Benedetti, G., Borino. (2018) A thermodynamically consistent CZM for low-cycle fatigue analysis. Key Engineering Materials, Vol.774; pp.576-582.

DOI: 10.4028/www.scientific.net/kem.774.576

Google Scholar

[24] Marannano, G., Pasta, A., Parrinello, F., Giallanza, A. (2015) Effect of the indentation process on fatigue life of drilled specimens. Jou. Mech.Sci.Tech. Vol.29 (7): pp.2847-2856.

DOI: 10.1007/s12206-015-0613-0

Google Scholar