Mechanical Properties and Fracture Surface Analysis of Vinyl Ester Resins Reinforced with Recycled Carbon Fibres

Article Preview

Abstract:

This work is focused on the mechanical characterization and fracture surfaces analysis of thermosetting polymers reinforced with short, randomly oriented, recycled carbon fibres (rCFs). This work aims at evaluating fibre/matrix adhesion between recycled CFs - reclaimed via pyrolysis followed by controlled oxidation of the pyrolytic char - and different polymer matrices, namely epoxy and vinyl ester resins. The latter is the main focus in this work, being amongst the most widely used thermosetting resins in SMC processes, which are the typical target for short rCFs. The evaluation of the properties of this new recycled carbon fibre reinforced polymer (rCFRP) has been via thermogravimetric analysis, dynamic mechanical analysis, stress/strain tests in tensile mode, and a subsequent analysis of the fracture surfaces by means of images analysis obtained by macrophotography, Optical Microscopy and Scanning Electron Microscopy. The comparison amongst the results allowed to evaluate the influence of the polymer nature and of the adhesion quality between fibres and polymeric matrix, mainly on the mechanical properties of the rCFRPs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.D.L Chung: Mat. Sci. Eng. R Rep. Vol. 113 (2017), p.1.

Google Scholar

[2] M. Sauer, M. Kühnel: Composites Market Report 2018 – Market developments, trends, challenges and opportunities (AVK – Industrievereinigung Verstärkte Kunststoffe e. V., November 2018).

Google Scholar

[3] G. Oliveux, L.O. Dandy and G.A. Leeke. Prog. Mater. Sci. Vol 72 (2015), p.61.

Google Scholar

[4] S.J. Pickering. Composites Part A Vol. 37(8) (2006), p.1206.

Google Scholar

[5] G. Jiang, S.J. Pickering, E.H. Lester, T.A. Turner, K.H. Wong and N.A. Warrior. Compos. Sci. Technol. Vol. 69(2) (2009), p.192.

Google Scholar

[6] L. Giorgini, T. Benelli, L. Mazzocchetti, C. Leonardi, G. Zattini, G. Minak et al. Polym. Compos. Vol. 36(6) (2015), p.1084.

DOI: 10.1002/pc.23440

Google Scholar

[7] S. Pimenta and S.T. Pinho. Waste Manage. Vol. 31(2) (2011), p.378.

Google Scholar

[8] S.J. Pickering, R.M. Kelly, J.R Kennerley, C.D. Rudd and N.J. Fenwick. Compos. Sci. Technol. Vol. 60(4) (2000), p.509.

Google Scholar

[9] G. Jiang, S.J. Pickering, G.S. Walker, K.H. Wong and C.D. Rudd. Appl. Surf. Sci. Vol. 254(9) (2008), p.2588.

Google Scholar

[10] L. Mazzocchetti, T. Benelli, E. D'Angelo, C. Leonardi, G. Zattini, L. Giorgini. Composites Part A Vol. 112 (2018), p.504.

Google Scholar

[11] F.A. López, O. Rodríguez, F.J. Alguacil, I. García-Díaz, T.A. Centeno, J.L. García-Fierro et al. J. Anal. Appl. Pyrol. Vol. 104 (2013), p.675.

Google Scholar

[12] L. Giorgini, C. Leonardi, L. Mazzocchetti, G. Zattini, M. Cavazzoni, I. Montanari, C. Tosi and T. Benelli. FME Trans. Vol. 44 (2016), p.405.

DOI: 10.5937/fmet1604405g

Google Scholar

[13] L. Giorgini, T. Benelli, C. Leonardi, L. Mazzocchetti, G. Zattini, M. Cavazzoni, I. Montanari and C. Tosi. Environ. Eng. Manag. J. Vol. 14(7) (2015), p.1611.

DOI: 10.30638/eemj.2015.173

Google Scholar

[14] E. Neri, B. Berti, F. Passarini, I. Vassura, L. Giorgini, G. Zattini, C. Tosi and M. Cavazzoni. Environ. Eng. Manag. J. Vol. 17(10) (2018), p.2437.

DOI: 10.30638/eemj.2018.242

Google Scholar

[15] E.S. Greenhalgh, in Failure Analysis and Fractography of Polymer Composites, chapter 3: Fibre-dominated failures of polymer composites, Woodhead Publishing Limited, Cambridge, UK (2009).

DOI: 10.1201/9781439847510-c3

Google Scholar