Nanofillers’ Effects on Fracture Energy in Composite Aerospace Structures

Article Preview

Abstract:

Composite materials damage behaviour is, nowadays, extensively investigated in the frame of aerospace research programmes. Among the several failure mechanisms which can affect composites, delamination can be considered as the most critical one, especially when combined to compressive loading conditions. In this context, nanofillers can represent an effective way to increase the composites fracture toughness with a consequent reduction of the delamination onset and evolution. Hence, in this paper, the toughening effect of the nanofillers on the delamination growth in composite material panels, subject to compressive load, has been numerically studied. A validated robust numerical procedure for the prediction of the delamination growth in composite materials panel, named SMXB and based on the VCCT-Fail release approach, has been used to perform numerical analyses by considering two different types of nanofillers. Reference material, without nanofillers insertion, has been used as benchmark in order to assess the capability of nanofillers to enhance the fracture toughness in composite laminates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-48

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] De Luca, A., Caputo, F., Sharif Khodaei, Z., Aliabadi, M.H. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves. (2018) Composites Part B: Engineering, 138, pp.168-180.

DOI: 10.1016/j.compositesb.2017.11.042

Google Scholar

[2] Sepe, R., De Luca, A., Lamanna, G., Caputo, F. Numerical and experimental investigation of residual strength of a LVI damaged CFRP omega stiffened panel with a cut-out. (2016) Composites Part B: Engineering, 102, pp.38-56.

DOI: 10.1016/j.compositesb.2016.07.009

Google Scholar

[3] Tamuzs, V., Tarasovs, S., Vilks, U. Delamination properties of translaminar-reinforced composites. (2003) Composites Science and Technology, 63 (10), pp.1423-1431.

DOI: 10.1016/s0266-3538(03)00042-3

Google Scholar

[4] Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S. Toughening mechanisms of nanoparticle-modified epoxy polymers. (2007) Polymer, 48 (2), pp.530-541.

DOI: 10.1016/j.polymer.2006.11.038

Google Scholar

[5] Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C., Sprenger, S. The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. (2010) Polymer, 51 (26), pp.6284-6294.

DOI: 10.1016/j.polymer.2010.10.048

Google Scholar

[6] Deng, S., Ye, L., Friedrich, K. Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures. (2007) Journal of Materials Science, 42 (8), pp.2766-2774.

DOI: 10.1007/s10853-006-1420-x

Google Scholar

[7] Bernd Wetzel, Patrick Rosso, Frank Haupert, Klaus Friedrich. Epoxy nanocomposites – fracture and toughening mechanisms. (2006) Engineering Fracture Mechanics, 73(16), pp.2375-2398.

DOI: 10.1016/j.engfracmech.2006.05.018

Google Scholar

[8] Quaresimin, M., Salviato, M., Zappalorto, M. A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites. (2014) Composites Science and Technology, 91, pp.16-21.

DOI: 10.1016/j.compscitech.2013.11.015

Google Scholar

[9] Odegard, G.M., Clancy, T.C., Gates, T.S. Modeling of the mechanical properties of nanoparticle/polymer composites. (2005) Polymer, 46 (2), pp.553-562.

DOI: 10.1016/j.polymer.2004.11.022

Google Scholar

[10] Hamdia, K.M., Zhuang, X., He, P., Rabczuk, T. Fracture toughness of polymeric particle nanocomposites: Evaluation of models performance using Bayesian method. (2016) Composites Science and Technology, 126, pp.122-129.

DOI: 10.1016/j.compscitech.2016.02.012

Google Scholar

[11] Riccio, A., Russo, A., Raimondo, A., Sellitto, A. Numerical investigation on delamination growth in composite panels including fibre-bridging effect. (2018). Aerotecnica missili & spazio, 97(1), pp.34-39.

DOI: 10.1007/bf03404763

Google Scholar

[12] Riccio, A., Russo, A., Sellitto, A., Raimondo, A. Development and application of a numerical procedure for the simulation of the Fibre Bridging, phenomenon in composite structures. (2017) Composite Structures, 168, pp.104-119.

DOI: 10.1016/j.compstruct.2017.02.037

Google Scholar

[13] Krueger, R. Virtual crack closure technique: History, approach, and applications. (2004) Applied Mechanics Reviews, 57 (1-6), pp.109-143.

DOI: 10.1115/1.1595677

Google Scholar