Numerical and Experimental Investigation on the Energy Absorption Capability of a Full-Scale Composite Fuselage Section

Article Preview

Abstract:

In the case of catastrophic events, such as an emergency landing, the fuselage structure is demanded to absorb most of the impact energy preserving, at the same time, a survivable space for the passengers. Moreover, the increasing trend of using composites in the aerospace field is pushing the investigation on the passive safety capabilities of such structures in order to get compliance with regulations and crashworthiness requirements. This paper deals with the development of a numerical model, based on the explicit finite element (FE) method, aimed to investigate the energy absorption capability of a full-scale 95% composite made fuselage section of a civil aircraft. A vertical drop test, performed at the Italian Aerospace Research Centre (CIRA), carried out from a height of 14 feet so to achieve a ground contact velocity of 30 feet/s in according to the FAR/CS 25, has been used to assess the prediction capabilities of the developed FE method, allowing verifying the response under dynamic load condition and the energy absorption capabilities of the designed structure. An established finite element model could be used to define the reliable crashworthiness design strategy to improve the survival chance of the passengers in events such as the investigated one.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-24

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.A. Obergefell, T.R. Gardner, I. Kaleps and J.T. Fleck: Articulated total body model Enhancements Vol.2: User's Guide (1998).

Google Scholar

[2] J.S. Ruan, C. Zhou, T.B. Khalil and A.I. King: Techniques and Applications of Finite Element Analysis of the Biomechanical Response of the Human Head to Impact (CRC Press LLC, 2001).

DOI: 10.1201/9781420049527.ch-07

Google Scholar

[3] J.S.H.M. Wismans: Injury biomechanics (Eindhoven University of Technology, Division of Fundamentals (WFW), 1994).

Google Scholar

[4] H.J. Mertz, P. Prasad and G. Nusholtz: SAE Technical Paper 960099 (1996).

Google Scholar

[5] A. De Luca and F. Caputo: AIMS Materials Science Vol. 4 (5) (2017), p.1165–1185.

Google Scholar

[6] A. Califano: AIP Conference Proceedings 1981, 020144 (2018).

Google Scholar

[7] F. Caputo, G. Lamanna, A. De Luca and V. Lopresto: AIP Conference Proceedings 1599, 334 (2014).

Google Scholar

[8] G. Lamanna, C. Opran and D. Perfetto: AIP Conference Proceedings 1981, 020136 (2018).

Google Scholar

[9] D. Perfetto, A. Greco and F. Caputo: AIP Conference Proceedings 1981, 020137 (2018).

Google Scholar

[10] R. Borrelli, A. Riccio, A. Sellitto, F. Caputo and T. Ludwig: Compos. Sci. Technol. Vol. 115 (2015), pp.43-51.

Google Scholar

[11] F. Caputo, G. Lamanna and A. Soprano: Procedia Engineer. Vol. 10 (2011), pp.2988-2993.

Google Scholar

[12] L. Xiaochuan, G. Jun, B. Chunyu, S. Xiasheng and M. Rangke: Chinese J. Aeronaut. Vol. 28(2) (2015), pp.447-456.

Google Scholar

[13] M. Guida, F. Marulo and S. Abrate: Prog. Aerosp. Sci. Vol. 98 (2018), pp.106-123.

Google Scholar

[14] F. di Napoli, A. De Luca, F. Caputo, F. Marulo, M. Guida and B.Vitolo: Int. J. Crashworthines. (2018).

Google Scholar

[15] F. Caputo, A. De Luca, A. Greco, S. Maietta, A. Marro and A. Apicella: Frattura ed Integrità strutturale Vol. 12 (2018), pp.191-204.

DOI: 10.3221/igf-esis.43.15

Google Scholar

[16] F. Caputo, A. De Luca, A. Greco, A. Marro, A. Apicella, R. Sepe and E. Armentani: Adv. Mater. Sci. Eng. Vol. 43 (2018), pp.1-21.

Google Scholar

[17] K.E. Jackson and E.L. Fasanella in: Design, Testing, and Simulation of Crashworthy Composite Airframe Structures at NASA Langley Research Center, volume 8 of Comprehensive Composite Materials II, chapter, 8.15, Elsevier (2018).

DOI: 10.1016/b978-0-12-803581-8.10063-3

Google Scholar

[18] D. I. Gransden and R. Alderliesten: Int. J. Crashworthines. Vol. 22 (2017), pp.401-414.

Google Scholar

[19] R. Sepe, R. Citarella, A. De Luca and E. Armentani: Adv. Mater. Sci. Eng. Vol. 2017 (2017), Article ID 1092701.

Google Scholar

[20] E. Armentani, R. Citarella and R. Sepe: Eng. Fract. Mech. Vol. 78 (2011), pp.1717-1728.

Google Scholar

[21] R. Sepe, E. Armentani and F. Caputo: Frattura ed Integrità Strutturale Vol. 10 (2016), pp.534-550.

DOI: 10.3221/igf-esis.35.59

Google Scholar

[22] C. Lawrence, E.L. Fasanella, A. Tabiei, J.W. Brinkley and D.M. Shemwell: NASA/TM—2008-215198 (2008).

Google Scholar

[23] M. Waimer, D. Kohlgrüber, D. Hachenberg and H. Voggenreiter: Compos. Struct. Vol. 105 (2013), pp.288-299.

Google Scholar

[24] M. Waimer, D. Kohlgrüber, R. Keck and H. Voggenreiter: CEAS Aeronaut. J. Vol. 4 (2013), pp.265-275.

Google Scholar

[25] D. Perfetto, A. De Luca, G. Lamanna, A. Chiariello, F. Di Caprio, L. Di Palma and F. Caputo: Procedia Structural Integrity Vol. 12 (2018), pp.380-391.

DOI: 10.1016/j.prostr.2018.11.079

Google Scholar

[26] F. Caputo, G. Lamanna and A. Soprano: SDHM Vol.7, no.4 (2011), pp.283-296.

Google Scholar

[27] G. Lamanna, F. Caputo and A. Soprano: AIP Conference Proceedings 1459, 353 (2012).

Google Scholar