Fibreglass Reinforced Polymer Structure Response under Different Impact Scenarios

Article Preview

Abstract:

Composite materials are increasingly used in those fields where it is necessary to achieve the requirements of lightweight and high mechanical properties. Even though their high specific strength which get these materials very attractive, especially for the transport field, there are several critical issues that still limit their application in primary structures. Among these, dynamic loading conditions play a critical role because they can significantly lower their residual strength. This paper aims to investigate experimentally the structural response of a 25 mm thick Omega composite structure under different impact loading conditions. The investigated test article consists of E-glass fibres (40% volume fraction) reinforced polyester matrix. The structure is covered by a HELIOPOL 1401 M AGC W 11 gelcoat layer and it has been impacted through a drop mass of 3.94 kg, dropped from heights of 50 mm, 75 mm, 100 mm, 150 mm, 200 mm, 250 mm, 350 mm and 500 mm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-18

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. De Luca, F. Caputo, in AIMS Mater Sci (2017) 4 (5), 1165–1185.

Google Scholar

[2] A. De Luca, Z. Sharif–Khodaei, F. Caputo, in Key Eng Mater (2016) 713, 10–13.

Google Scholar

[3] A. De Luca, D. Perfetto, A. De Faenza, G. Petrone, F. Caputo, in Compos Struct 210 (2019), 96–108.

Google Scholar

[4] A. Pilato Louis and J. Michno Michael: Advanced composite material (Springer Science & Business Media, 1994).

Google Scholar

[5] Yuan Hu, Weiwei Liu and Yaoyao Shi, in: Compos Struct 216 (2019), pp.127-141.

Google Scholar

[6] Said Mouhoubi and Krimo Azouaoui, in: J Compos Mater 53(6) (2018), pp.799-817.

Google Scholar

[7] R. Sepe, A. De Luca, G. Lamanna and F. Caputo, in: Compos Part B Eng 102 (2016), pp.38-56.

Google Scholar

[8] F. Caputo, A. De Luca and R. Sepe: Comp Part B Eng. Vol. 79 (2015), pp.456-465.

Google Scholar

[9] D. Perfetto, A. Greco and F. Caputo, in: AIP Conf Proc 1981 (2018), article number 020137.

Google Scholar

[10] BS Sagun and RMVGK Rao, in: J Reinf Plast Compos 23 (2004), pp.1583-1599.

Google Scholar

[11] E. Armentani, R. Citarella and R. Sepe, in: Eng Fract Mech 78(8) (2011), pp.1717-1728.

Google Scholar

[12] G. Belingardi and R. Vadori, in: Int J Impact Eng 27(2) (2002), pp.213-219.

Google Scholar

[13] F. Caputo, G. Lamanna, A. De Luca, R. Borrelli and S. Franchitti, in: Struct Durab Health Monit 2 (2014), pp.1-15.

Google Scholar

[14] F. Caputo, G. Lamanna, A. De Luca and V. Lopresto, in: AIP Conf Proc 1599 (2014).

Google Scholar

[15] F. Caputo, A. De Luca, G. Lamanna, R. Borrelli, U. Mercurio, in Compos Part B Eng 67 (2014), pp.296-302.

Google Scholar

[16] A. De Luca, F. Caputo, Z. Sharif Khodaei, M.H. Aliabadi, in Compos Part B Eng 138 (2018), pp.168-180.

Google Scholar

[17] A. Riccio, R. Cristiano, S. Saputo, A. Sellitto, in Compos Struct 202 (2019), pp.590-602.

Google Scholar

[18] M. Guida, A. Sellitto, F. Marulo, A. Riccio, in Materials 12(1) (2019), article number 153.

Google Scholar

[19] G. Belingardi, M.P. Cavatorta and D.S. Paolino, in: Int J Impact Eng 35 (2008), pp.247-258.

Google Scholar

[20] R. Borrelli, A. Riccio, A., Sellitto, F. Caputo, T. Ludwig, in Compos Sci Technol 115 (2015), pp.43-51.

Google Scholar