Computational Analysis of Resistance to Alveolar Bone Resorption of Osseointegrated Implant

Article Preview

Abstract:

Dental implant failure started with a resorption on alveolar crest. Resorption occurred if the stress is greater than the strength threshold (ultimate strength). Bones carrying mechanical loads adapt their strength to the load applied on it by bone modelling or remodelling; by apposition or destruction depends on internal stress level distributed on the bones. This research was conducted using FEM on a CBCT image of model which were implanted and converted into computerized 3D finite element digital model. The model was given material properties, fixed support, and being simulated on occlusal loads of 87 N and friction loads of 29 N for 0,7 seconds.Maximum princip al loads on alveolar bone of implant model was 41 Mpa and still below the ultimate strength (69 MPa). Based on the stress level above, it may be concluded that alveolar bone on implant model has good resistance towards resorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-246

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.E. Misch, Contemporary Implant Dentistry, Mosby Elsevier., St. Louis Missouri, 2008, pp.543-596.

Google Scholar

[2] M.G. Newman, H.H. Takei, P.R. Klokkevold, F.A. Carranza, Carranza's Clinical Periodontology, 9th ed., Mosby Elsevier., St. Louis Missouri, 2003, pp.882-887.

Google Scholar

[3] F. Isidor, Influence of forces on peri-implant bone, Clin Oral Implants Res. 17 (2006) 8-18.

DOI: 10.1111/j.1600-0501.2006.01360.x

Google Scholar

[4] Osstem Implant R&D Center. Osstem Implant Documentations, Osstem Implant System, 2013, pp.8-11.

DOI: 10.26226/morressier.5ac383202afeeb00097a47c9

Google Scholar

[5] H.L. Huang, C.H. Chang, J.T. Hsu, A.M. Fallgatter, CC. Ko, Comparison of implant body designs and threaded designs of dental implants: a 3-dimensional finite element analysis, Int J Oral Maxillofac Implants. 22(4) (2007) 551-562.

DOI: 10.1111/j.1600-0501.2005.01124.x

Google Scholar

[6] M. Cicciù, E. Bramanti, F. Cecchetti, L. Scappaticci, E. Guglielmino, FEM and Von Mises analyses of different dental implant shapes for masticatory loading distribution, Oral Implant. 7(1) (2014) 1-10.

DOI: 10.11138/orl/2014.7.1.001

Google Scholar

[7] Y. Okazaki, Comparison of fatigue properties and fatigue crack growth rates of various implantable metals, Materials (Basel). 5(12) (2012) 2981-3005.

DOI: 10.3390/ma5122981

Google Scholar

[8] C.R. Hassler, E.F. Rybicki, K.D. Cummings, L.C. Clark, Quantification of bone stresses during remodeling, J Biomech. 13(2) (1980) 185-190.

DOI: 10.1016/0021-9290(80)90192-x

Google Scholar

[9] J. Schrotenboer, Y.P. Tsao, V. Kinariwala, H.L. Wang, Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis, J Periodontol. 79(11) (2008) 2166-2172.

DOI: 10.1902/jop.2008.080178

Google Scholar

[10] T.O. Albrektsson, C.B. Johansson, L. Sennerby, Biological aspects of implant dentistry: osseointegration, Periodontol 2000. 4 (1994) 58-73.

DOI: 10.1111/j.1600-0757.1994.tb00006.x

Google Scholar