[1]
V. Peciuliene, I. Balciuniene, H.M. Eriksen, M. Haapasalo, Isolation of Enterococcus faecalis in previously root filled canals in a lithuanian population. J Endod. 26 (2000) 593-595.
DOI: 10.1097/00004770-200010000-00004
Google Scholar
[2]
H.H. Hancock, A. Sigurdson, M. Trope, J. Moiseiwitsch, Bacteria isolated after unsusccessful endodontic treatment in a north american population. Oral Surg Oral Med Oral Pathol. 91 (2001) 579-586.
DOI: 10.1067/moe.2001.113587
Google Scholar
[3]
I. Portenier, T.M. Waltimo, M. Haapsalo, Enterococcus faecalis- the root canal survival and star in post treatment disease. Endodontic Topics. 6 (2003) 135-159.
DOI: 10.1111/j.1601-1546.2003.00040.x
Google Scholar
[4]
C. Evanov, F. Lieweehr, T.B. Buxton, A.P. Joyce, Antibacterial efifacy of calcium hidroxide and chlorhexidine gluconate irrigant at 37°C and 46°C. J Endod. 30 (2004) 653-657.
DOI: 10.1097/01.don.0000121620.11272.22
Google Scholar
[5]
B. Basrani, E. Pascon, S. Friedman. Efficacy of chlorhexidine-and calcium hydroxide-containing medicaments against Enterococcus faecalis in vitro, Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 96 (2003) 618-624.
DOI: 10.1016/s1079-2104(03)00166-5
Google Scholar
[6]
R.E. Walton, E.M. River, Cleaning and Shaping, In: R.E. Walto, M. Torabinejad, Principles and Practice of Endodontic. third ed., W.B Saunders, Philadelphia, 2002, pp.206-238.
Google Scholar
[7]
A.R. Ten Cate, Oral Histology: Development, Structure and Function, fifth ed., Mosby Inc., St. Louis M.O, 1998, p.155.
Google Scholar
[8]
J.I. Ingle, L.K. Bakland. Endodontics, fifth ed., Bc Decker inc., London, 2002, pp.186-187.
Google Scholar
[9]
D. Ricucci, J.F. Siqueira, A.L. Bate, T.R. Pitt Ford. Histologic investigation of root canal treated teeth with apical periodontitis: a retrospective study from 24 patients, J Endod. 3 (2009) 493-502.
DOI: 10.1016/j.joen.2008.12.014
Google Scholar
[10]
I.N. Rocas, J.F. Siqueir, K.R.N Santos. Association of enterococcus faecalis with different forms of periradicular, J Endod. 30 (2004) 315-320.
DOI: 10.1097/00004770-200405000-00004
Google Scholar
[11]
M.N. Hamsa, H.H. Mization. Potential of ant-nest plants as an alternative cancer treatment, J of Pharm Res. 6 (2012) 3063-3066.
Google Scholar
[12]
A. Soeksmanto, M.A. Subroto, H. Wijaya, P. Simanjuntak. Anticancer activity for extracts of sarang semut plant (myrmecodia pendens) to HeLa and MCM-B2 cells, Pakistan J Biol. Sci. 13 (2010) 148-151.
DOI: 10.3923/pjbs.2010.148.151
Google Scholar
[13]
T. Hertiani, E. Sasmito, Sumardi, M. Ulfah. Preliminary study on immunomodulatory effect of sarang semut plant (Myrmecodia pendens) to HeLa and MCM-B2 cells, Pakistan J Biol. Sci. 13 (2010) 136-141.
DOI: 10.3844/ojbsci.2010.136.141
Google Scholar
[14]
L.I. Grossman, S. Oliet, C.E. Del Rio, Endodontic Practice, eleventh ed., Philadelphia, USA, (1995).
Google Scholar
[15]
S.K. Ghosh, Functional Coating by Polymer Microencapsulation, Wiley-Vch Verlag GmbH and Co KgaA, Germany, (2006).
Google Scholar
[16]
A.N. Ullman, Industrial Organic Chemicals 7, Willey-VCH, New York, (1989).
Google Scholar
[17]
W. Wang. Microencapsulation using natural polysaccharides for drug delivery and cell implantation, J Mater Chem. 16 (2006) 3252–3267.
Google Scholar
[18]
F. Danhier, E. Ansoren, J.M. Silva, R. Coco, A. Le Breton, V. Préat. PLGA-based nanoparticles: an overview of biomedical applications, Journal of Controlled Release. 161 (2012) 505-522.
DOI: 10.1016/j.jconrel.2012.01.043
Google Scholar
[19]
U. Jana, A.K. Mohanty, S.L. Pal, P.K. Manna, G.P. Mohanta. Felodipine loaded PLGA nanoparticles: preparation, physicochemical characterization and in vivo toxicity study, J. Nano Convergence. 1 (2014) 31.
DOI: 10.1186/s40580-014-0031-5
Google Scholar
[20]
D. Sun, N. Li, W. Zhang, E. Yang, Z. Mou, Z. Zhao, et. al. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo, J. Nanopart Res. 18 (2015) 3.
DOI: 10.1007/s11051-015-3310-0
Google Scholar
[21]
C. Fornaguer, N. Feiner-Gracia, G. Caldero, M.J. Garcia-Celma, C. Solans. Pharmacological aspects of galantamine for the treatment of Alzheimer's disease. J. Nanoscale. 7 (2015) 12076-12084.
DOI: 10.1039/c5nr03474d
Google Scholar
[22]
C. Wischke, S.P. Schwendeman. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles, International journal of pharmaceutics. 364 (2008) 298-327.
DOI: 10.1016/j.ijpharm.2008.04.042
Google Scholar
[23]
J.E. Mc. Cormick JE, F.S Weine, J.D. Maggio. Tissue pH of developing periapical lesions in dogs, Journal of Endod. 9 (1983) 47-51.
DOI: 10.1016/s0099-2399(83)80074-0
Google Scholar
[24]
D. Trombetta. Mechanisms of antibacterial action of three monoterpenes antimicrob. J. Agents Chemother. 49 (2005) 2474-2478.
DOI: 10.1128/aac.49.6.2474-2478.2005
Google Scholar
[25]
T.C. Volgeson. Advances in drug delivery systems, J. Modern Drug Discovery. 4 (2001) 49-50,52.
Google Scholar
[26]
A. Urzua, M.A. Rezende, C. Mascayano, L. Vasquez. A Structure-activity study of antibacterial diterpenoids, J. Molecules. 13 (2008) 882-891.
DOI: 10.3390/molecules13040822
Google Scholar
[27]
Bush. Ceramic micro-particles synthesised using emulsion and sol-gel technology: an investigation into the controlled release of encapsulants and the tailoring of micro-particle size, Journal of Sol Gel Science and Technology. 3 (2006) 85-90.
DOI: 10.1007/s10971-004-5770-z
Google Scholar