Dielectric Properties of a New Ceramic System (1-x)(Mg0.95Zn0.05)2TiO4-x(Ca0.8Sr0.2)TiO3 at Microwave Frequencies

Article Preview

Abstract:

The microwave dielectric properties and microstructures of the (1-x)(Mg0.95Zn0.05)2TiO4-x (Ca0.8Sr0.2)TiO3 ceramics prepared using the conventional solid-state route were investigated. The structure and microstructure were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Ilmenite-structured (Mg0.95Zn0.05)TiO3 was detected as a second phase. The coexistence of the second phase, however, did not degrade the dielectric properties of the specimen because the phases were compatible. At x = 0.07, a dielectric constant (εr) of ~17.86, a quality factor (Q×f) value of ~ Q×f~133,600 Hz (at 10 GHz), and a temperature coefficient of resonant frequency (τf) of ~ –5ppm/°Cwere obtained for 0.93(Mg0.95Zn0.05)2TiO4-0.07(Ca0.8Sr0.2)TiO3 ceramic sintered at 1240°C for 4 hr. The dielectric is proposed as a candidate material for low-loss microwave and millimeter wave applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-42

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.J. Bian, Y. Fei Dong, G.X. Song, J. Am. Ceram. Soc., 91, 1182-1187(2008).

Google Scholar

[2] C.L. Huang, J.J. Wang, Y.P. Chang, J. Am. Ceram. Soc., 90, 858-862 (2007).

Google Scholar

[3] A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M.Valant, D. Suvorov, J. Am. Ceram. Soc., 89, 3441-3445 (2006).

DOI: 10.1111/j.1551-2916.2006.01271.x

Google Scholar

[4] C.L. Huang, S.S. Liu, J. Am. Ceram. Soc., 91, 3428-3430 (2008).

Google Scholar

[5] P.L. Wise, I.M. Reaney, W.E. Lee, J. Eur. Ceram. Soc., 21, 1723-1726 (2001).

Google Scholar

[6] K. Yan, M. Fujii, T. Karaki, M. Adachi, Jpn. J. Appl. Phys., 46 7105-7107 (2007).

Google Scholar

[7] K. Wakino, Ferroelectrics., 91, 69-86 (1989).

Google Scholar

[8] R.C. Kell, A.C. Greenham, G.C.E. Olds, J. Am. Ceram. Soc., 56 352-354 (1973).

Google Scholar

[9] A. Feteira, D.C. Sinclair, M.T. Lanagan, J. Mater. Res., 20, 2391-2399 (2005).

Google Scholar

[10] C.L. Huang, S.S. Liu, Jpn. J. Appl. Phys., 46, 283-285(2007).

Google Scholar

[11] Y. Xu, R.L. Fu, S. Agathopoulos, X. Wang, Y. Yang, J.D. Cai, Ceram. Int., 42 (13), 14573-14580 (2016).

Google Scholar

[12] H.F. Zhou, K.G. Wang, W.D. Sun, X.L. Chen, H. Ruan, Mater. Lett. 217, 20-22 (2018).

Google Scholar

[13] H.H. Xi, D. Zhou, H.D. Xie, B. He, Q.P. Wang, Raman spectra, J. Am. Ceram. Soc., 97 (2), 587-593 (2014).

Google Scholar

[14] Z.X. Wang, C.L. Yuan, B.H. Zhu, Q. Feng, F. Liu, J.W. Xu, C.R. Zhou, G.H. Chen, Ceram. Int., 44, 6601-6606 (2018).

Google Scholar