[1]
M. T. Anaraki, M. Sanjari, A. Akbarzadeh, Modeling of high temperature flow behavior of AZ61 Mg-alloy using inverse method and ANN, Mater. Design, 29(9) (2008) 1701-1706.
DOI: 10.1016/j.matdes.2008.03.027
Google Scholar
[2]
J. Liu, L. Jin, Z. He et al. Hot Deformation Behavior of 7N01 Aluminum Alloy, Chinese J. Rare Met. 35(6) (2011) 812-817.
Google Scholar
[3]
J. Liu, W. Zeng, Y. Zhu et al. Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-Phase Region and Dual-Phase Regions, J. Mater. Eng. Perform. 24(5) (2015) 2140-2150.
DOI: 10.1007/s11665-015-1456-7
Google Scholar
[4]
R. Kaibyshev, O. Sitdikov, A. Goloborodko et al. Deformation Behavior of 7475 Aluminum Alloy at High Temperature, Key Eng. Mater. 171-174 (2000) 355-362.
DOI: 10.4028/www.scientific.net/kem.171-174.355
Google Scholar
[5]
M. R. Shagiev, Y. Motohashi, F. F. Musin et al. High Strain Rate Superplastic Behavior of Al-Li-Mg-Cu-Sc Alloy Subjected to Severe Plastic Deformation, Met. Mater. High Struct. Efficiency, (2004).
DOI: 10.1007/1-4020-2112-7_19
Google Scholar
[6]
R. Kaibyshev, I. Mazurina, O. Sitdikov, Geometric Dynamic Recrystallization in an AA2219 Alloy Deformed to Large Strains at an Elevated Temperature, Mater. Sci. Forum, (2004).
DOI: 10.4028/www.scientific.net/msf.467-470.1199
Google Scholar
[7]
J. Fragomeni, R. Wheeler, K. V. Jata, Effect of single and duplex aging on precipitation response, microstructure, and fatigue crack behavior in Al-Li-Cu alloy AF/C-458, J. Mater. Eng. Perform. 14(1) (2005) 18-27.
DOI: 10.1361/10599490522329
Google Scholar
[8]
H. Mirzadeh, J. M. Cabrera, J. M. Prado et al. Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A, 528(10) (2011) 3876-3882.
DOI: 10.1016/j.msea.2011.01.098
Google Scholar
[9]
H. R. R. Ashtiani, M. H. Parsa, H. Bisadi, Constitutive equations for elevated temperature flow behavior of commercial purity aluminum, Mater. Sci. Eng. A, 545 (2012) 61-67.
DOI: 10.1016/j.msea.2012.02.090
Google Scholar
[10]
R. Ebrahimi, A. Najafizadeh, A new method for evaluation of friction in bulk metal forming, J. Mater. Process. Technol. 152(2) (2004) 136-143.
DOI: 10.1016/j.jmatprotec.2004.03.029
Google Scholar
[11]
S. Mandal, V. Rakesh, P. V. Sivaprasad et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel, Mater. Sci. Eng. A, 500(1) (2009) 114-121.
DOI: 10.1016/j.msea.2008.09.019
Google Scholar
[12]
H. Ying, G. Qiao, S. Yu et al. Modeling the constitutive relationship of Cr 20 Ni 25 Mo 4 Cu superaustenitic stainless steel during elevated temperature, Mater. Sci. Eng. A, 539 (2012) 61-67.
DOI: 10.1016/j.msea.2012.01.036
Google Scholar