Experimental Measurement, Modeling and Calculation of Volume Changes of Cement Concrete

Article Preview

Abstract:

The paper describes experimental measurement of volume changes of cement concrete. Volume changes include swelling and shrinkage of cement concrete specimens measured by string strain gauges both internal and external. Parallel to this measurement, the volume changes will be measured by means of shrinkage drains. The measurement of volume changes by the shrinkage drains is allowing continuous volume changes to be measured from the beginning of the setting of the concrete. It is possible to capture the entire process of hydration of concrete. The specimens are in the laboratory and in the outdoor environment, so it’s possible to compare values from different environments. The measured results are compared with the calculation models of shrinkage (Model B4 from Bažant [4]; Model Code 2010 [16] and ČSN EN 1992-1-1 [9]).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-62

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] AÏTCIN, Pierre-Claude. Binders for durable and sustainable concrete. New York: Taylor & Francis, 2008. ISBN 978–0–203–94048–8.

Google Scholar

[2] AÏTCIN, Pierre-Claude a Sidney. MINDESS. Sustainability of concrete. New York: Spon Press, 2011. Modern concrete technology, 17. ISBN 978-0-203-85663-5.

Google Scholar

[3] ALTOUBAT A. Salah and David A. Lange. Creep, Shrinkage, and Cracking of Restrained Concrete at Early Age. ACI Materials Journal. 2001, 98(4).

DOI: 10.14359/10401

Google Scholar

[4] BAZANT, Zdenek. RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete. Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high strength concretes with multi-decade applicability. Materials and Structures. 2015, 48(4), 753-770.

DOI: 10.1617/s11527-014-0485-2

Google Scholar

[5] BAZANT, Zdenek, Vladimir KRISTEK and Jan VITEK. Drying and cracking effects in box – girder bridge segment. J Struct Eng. 1992;118(1):305-321.

DOI: 10.1061/(asce)0733-9445(1992)118:1(305)

Google Scholar

[6] CAJKA, Radim, Martina SMIRAKOVA and Jana VASKOVA. Experimental Testing of Shear Resistance on SFRC Slab Structures. Materials Science Forum. 2017, 893, 363-368.

DOI: 10.4028/www.scientific.net/msf.893.363

Google Scholar

[7] CAJKA, R., P. MYNARCIK and J. LABUDKOVA. Experimental measurement of soil-prestressed foundation interaction (2016), International Journal of GEOMATE, 10 (4), pp.2101-2108.

DOI: 10.21660/2016.22.5385

Google Scholar

[8] COLLEPARDI, Mario. The New Concrete. 2nd. Italy: Grafiche Tintoretto, 2010. ISBN 8890377720.

Google Scholar

[9] CSN EN 1992-1-1. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings. Prague: Czech standards institute, (2006).

Google Scholar

[10] CSN EN 206. Concrete – Specification, performance, production and conformity. Prague: Czech Office for Standards, Metrology and Testing, (2014).

Google Scholar

[11] ED. BY A. BENTUR. Early age cracking in cementitious systems: report of RILEM Technical Committee 181-EAS Early Age Shrinkage Induced Stresses and Cracking in Cementitious Systems,. Bagneux: RILEM Publ, 2003. ISBN 2912143330.

DOI: 10.1617/2912143632.023

Google Scholar

[12] Guide for modelling and calculating shrinkage and creep in hardened concrete. Farmington Hills, MI: American Concrete Institute, 2008. ISBN 978-0-87031-278-6.

Google Scholar

[13] HAVLASEK, Petr and Milan JIRASEK. Multiscale modelling of drying shrinkage and creep of concrete. Cement and Concrete Research. 2016, 85, 55-74.

DOI: 10.1016/j.cemconres.2016.04.001

Google Scholar

[14] HOLT, Erika E. Early age autogenous shrinkage of concrete. Espoo: Technical Research Centre of Finland, 2001. ISBN 9513858707.

Google Scholar

[15] HOUST, Y. F. Carbonation shrinkage of hydrated cement paste. In: Proc. 4th CANMET/ACI International Conference on Durability of Concrete. (1997).

Google Scholar

[16] INTERNATIONAL FEDERATION FOR STRUCTURAL CONCRETE FIB. Model code 2010: first complete draft. Lausanne, Switzerland: Fédération internationale du béton, 2010. ISBN 978-288-3940-956.

Google Scholar

[17] JANULIKOVA, Martina. Comparison of the Shear Resistance in the Sliding Joint between Asphalt Belts and Modern PVC Foils. Applied Mechanics and Materials. 2014, 501-504, 945-948.

DOI: 10.4028/www.scientific.net/amm.501-504.945

Google Scholar

[18] JANULIKOVA, Martina and Marie STARA. Reducing the Shear Stress in the Footing Bottom of Concrete and Masonry Structures. Procedia Engineering. 2013, 65, 284-289.

DOI: 10.1016/j.proeng.2013.09.044

Google Scholar

[19] KROPACEK, Michal and Jiri SAFRATA. Volume changes of cements from different locations depending on time. Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series. 2015, 15(1), 11-20. ISSN 1213-1962.

Google Scholar

[20] MYNARCIK, Petr. Technology and Trends of Concrete Industrial Floors. Procedia Engineering. 2013, 65, 107-112.

Google Scholar

[21] MYNARCIK, Petr, Jana LABUDKOVA and Jiri KOKTAN. Experimental and numerical analysis of interaction between subsoil and post-tensioned slab-on-ground. Jurnal Teknologi. 2016, 78(5-4).

DOI: 10.11113/jt.v78.8530

Google Scholar

[22] NAVRATIL, J., Structural analysis of bridges, legitimate conservatism and obsolete theories, (2004), Concrete Engineering International, 8 (1), pp.17-19.

Google Scholar

[23] NAVRATIL, Jaroslav and Radim CAJKA. Crack Control in Reinforced Concrete Liquid Retaining Structures. Materials Science Forum. 2017, 893, 410-415.

DOI: 10.4028/www.scientific.net/msf.893.410

Google Scholar

[24] NAVRATIL, J., M. CIHAL, J. KABELAC and R. STEFAN. Nonlinear analysis of reinforced and composite columns in fire. Frattura ed Integrita Strutturale. 2017, 11 (39), pp.72-87.

DOI: 10.3221/IGF-ESIS.39.09

Google Scholar

[25] NAVRATIL, Jaroslav and Milos ZICH. Long-term deflections of cantilever segmental bridges. The Baltic Journal of Road and Bridge Engineering. 2013, 8(3), 190-195.

DOI: 10.3846/bjrbe.2013.24

Google Scholar

[26] NAVRATIL, J. and M. ZICH. Long-term deflections of long-span bridges, (2010), 5th International Structural Engineering and Construction Conference CHALLENGES, OPPORTUNITIES AND SOLUTIONS IN STRUCTURAL ENGINEERING AND CONSTRUCTION,, pp.385-390, ISBN:978-0-415-56809-8, WOS:000290418600060.

DOI: 10.1201/9780203859926.ch60

Google Scholar

[27] RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete. Materials and Structures. 2015, 48(4), 753-770.

DOI: 10.1617/s11527-014-0485-2

Google Scholar

[28] STRASKY, Jiri, Jaroslav NAVRATIL and Stanislav SUSKY. Applications of Time-Dependent Analysis in the Design of Hybrid Bridge Structures. PCI Journal. 2001, 46(4), 56-74.

DOI: 10.15554/pcij.07012001.56.74

Google Scholar

[29] TAZAWA, Ei-ichi. Autogenous Shrinkage of Concrete. 1st Ed. New York: E, 1999,411 s. ISBN 04-192-3890-5.

Google Scholar

[30] VINKLER, Marek and Jan L. VITEK. Drying shrinkage of concrete elements: Structural Concrete. Structural Concrete. 2017, 18(1), 92-103.

DOI: 10.1002/suco.201500208

Google Scholar