Numerical Modelling of Idealized Masonry Samples in 2D with Use of Tensor Scale

Article Preview

Abstract:

This paper discusses relations between structure of bi-material samples in 2D and their anisotropic indices and mechanical properties. The bi-material sample is designed to be close to masonry structure. Different ratios of elastic moduli of material are studied and computed material parameters are given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-108

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kroftová, M. Šmidtová, Stabilization, conversation and strenghthening of historic plaster using nanofibers, Advanced Materials Research, 923 (2014) 48-51.

DOI: 10.4028/www.scientific.net/amr.923.48

Google Scholar

[2] J. Witzany, R. Zigler, J. Kubát, K. Kroftová, M. Šmidtová, Experimental research into the response of masonry segmental barrel vaults to static and dynamic loading, Insights and Innovations in Structural Engineering, Mechanics and Computation - Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation (2016).

DOI: 10.1201/9781315641645-277

Google Scholar

[3] A. Maroušková, Inelastic material models for numerical analysis of unreinforced comprebed masonry columns, Key Engineering Materials, 677 (2016) 197-202.

DOI: 10.4028/www.scientific.net/kem.677.197

Google Scholar

[4] R. Cajka, L. Kalocova, Modelling and analysis of post-tensioned masonry, Proceedings of the 11th International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp (2007).

DOI: 10.4203/ccp.86.221

Google Scholar

[5] J. Sejnoha, M. Sejnoha, J. Sykora, J. Vorel, An Improved Material Model for Quarry Masonry, Proceedings of the Eighth International Conference on Computational Structures Technology Stirling, Civil-Comp Press Ltd. (2006).

DOI: 10.4203/ccp.83.88

Google Scholar

[6] S. Pietruszczak, R. Ushaksaraei, Description of inelastic behaviour of structural masonry, International Journal of Solids and Structures, 40, Issue 15 (2003).

DOI: 10.1016/s0020-7683(03)00174-4

Google Scholar

[7] A. Zucchini, P. B. Lourenco, A Coupled Homogenisation-Damage Model for Masonry Cracking, Computers and Structures 82, (2004) 917-929.

DOI: 10.1016/j.compstruc.2004.02.020

Google Scholar

[8] P. K. Saha, F. W. Wehrli, A robust method for measuring trabecular bone orientation anisotrophy at in vivo resolution using tensor scale, Pattern Recognition 37 (2004). 1935-1944.

DOI: 10.1016/j.patcog.2003.12.019

Google Scholar

[9] Information on http://github.com/jurabr/ufem.

Google Scholar

[10] J. Brozovsky, M. Maluchova, Estimation of initial elastic properties of 2D homogenised masonry model based on tensor scale indices, Perspectives in Science, 7 (2016) 195–199.

DOI: 10.1016/j.pisc.2015.11.032

Google Scholar

[11] A. Genau, P. Voorhees, L. Thornton, The morphology of topologically complex interfaces Scripta Materialia, 60, (2009), 301-304.

DOI: 10.1016/j.scriptamat.2008.10.032

Google Scholar

[12] J. Brozovsky, P. Pankaj, Towards modelling of a trabecular bone, Computers and Structures, 85, Issue 9 (2007) 512-517.

DOI: 10.1016/j.compstruc.2006.08.037

Google Scholar

[13] P. K. Saha, Tensor scale: Alocal morphometric parameter with applications to computer vision and image processing, Computer Vision and Image Understanding 99, (2005) 384-413.

DOI: 10.1016/j.cviu.2005.03.003

Google Scholar

[14] J. Witzany, J. Brožovsky, T. Čejka, K. Kroftová, J. Kubát, D. Makovička, R Zigler, The application of carbon composites in the rehabilitation of historic baroque vaults, Volume 7, Issue 12 (2015) 2670-2689.

DOI: 10.3390/polym7121540

Google Scholar