Fusing of Silver Nanoparticles at Room Temperature Using Halide Solutions for Conductive Inks

Article Preview

Abstract:

Fusing of silver (Ag) nanoparticles synthesized in an aqueous system was observed at room temperature using halide solutions. The as-synthesized Ag nanoparticles have an average diameter of about 24 nm. After dispersing the Ag nanoparticles in a halide solution, a significant increase in particle size to about 188-197 nm was observed. The enlargement of particle size was accompanied by the increase in conductivity of the Ag nanoparticle ink. The resistance was reduced from 110 kiloohms to 35 and 9.3 ohms for the as-prepared and sintered Ag nanoparticles using NaBr and NaCl solution, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-185

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. N. Hoth , S. A. Choulis , P. Schilinsky , C. J. Brabec. High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends., Adv. Mater. 19 (2007) 3973-3978.

DOI: 10.1002/adma.200700911

Google Scholar

[2] H. Sirringhaus , T. Kawase , R. H. Friend , T. Shimoda , M. Inbasekaran , W. Wu , E. P. Woo. High-Resolution Inkjet Printing of All-Polymer Transistor Circuits, Science 290 (2000) 2123-2126.

DOI: 10.1126/science.290.5499.2123

Google Scholar

[3] Y. Kondo, H. Tanabe, T. Otake. Novel electrochromic polymer for electronic paper, IEICE Transactions on Electronics E93.C (2010) 1602-1606.

DOI: 10.1587/transele.e93.c.1602

Google Scholar

[4] L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, Y. Cui, Highly Conductive Paper for Energy Storage Devices, Proc Nat. Acad. Sci., 106 (2009) 21490.

DOI: 10.1073/pnas.0908858106

Google Scholar

[5] V. Subramanian, J. M. J. Fréchet , P. C. Chang, D. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, S. K. Volkman. Progress towards development of all-printed RFID tags: Materials, Processes, and Devices",  Proceedings of the IEEE 93 (2005) 1330-1338.

DOI: 10.1109/jproc.2005.850305

Google Scholar

[6] C. T. Wang , K. Y. Huang , D. T. W. Lin , W. C. Liao , H. W. Lin , Y. C. Hu. Reactive silver inks for high performance printed electronics, Sensors 10 (2010) 5054-5062.

Google Scholar

[7] J. S. Kang, J. Ryu, H.S. Kim, H.T. Hahn. Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light, J. of Elec. Mater. 40 (2011) 2268-2277.

DOI: 10.1007/s11664-011-1711-0

Google Scholar

[8] S. Merilampi, T. Laine-Ma, P. Ruuskanen. The characterization of electrically conductive silver ink patterns on flexible substrates. Microelectron. Reliab. 49 (2009) 782–790.

DOI: 10.1016/j.microrel.2009.04.004

Google Scholar

[9] S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature, ACS Nano. 4 (2010) 1943-1948.

DOI: 10.1021/nn901868t

Google Scholar

[10] M. Layani, M. Grouchko, S. Shemesh, S. Magdassi, Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions, J. Mater. Chem. 22 (2012) 14349-14352.

DOI: 10.1039/c2jm32789a

Google Scholar

[11] E. Datu, M. D. Balela, In situ electrochemical study of copper nanoparticles stabilized with food grade gelatin, Key Engineering Materials 705 (2016) 163-167.

DOI: 10.4028/www.scientific.net/kem.705.163

Google Scholar

[12] M. Tan and M. D. L. Balela, Electrochemical Investigation of the Growth of Copper Nanowires in the Presence of Ethylenediamine through Mixed Potential, J. Electrochem. Soc., 164 (2017) 7.

DOI: 10.1149/2.0491707jes

Google Scholar

[13] D. Corsino, M.D. Balela. Room temperature sintering of printer silver nanoparticle conductive ink, IOP Conf. Ser.: Mater. Sci. Eng. 264 (2017) 012020.

DOI: 10.1088/1757-899x/264/1/012020

Google Scholar

[14] N. De Guzman, M. Ramos, Jr., M. D. Balela. Improvements in the electroless deposition of Ag nanowires in hot ethylene glycol for resistive touchscreen device, Materials Research Bulletin 106 (2018) 446-454.

DOI: 10.1016/j.materresbull.2018.06.030

Google Scholar

[15] N. De Guzman, M.D. Balela. Growth of ultralong Ag nanowires by electroless deposition in hot ethylene glycol for flexible transparent conducting electrodes, Journal of Nanomaterials 2017 (2017) 14 pages.

DOI: 10.1155/2017/7896094

Google Scholar

[16] T. H. J van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert. Inkjet printing of narrow conductive tracks on untreated polymeric substrates, Adv. Mater. 20 (2008) 343–345.

DOI: 10.1002/adma.200701876

Google Scholar

[17] S. Sivaramakrishnan, P.J. Chia, Y.C. Yeo, L.L. Chua, P.K.H. Ho. Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters, Nat. Mater. 6 (2007) 149–155.

DOI: 10.1038/nmat1806

Google Scholar

[18] J. Perelaer, B.J de Gans, U.S. Schubert. Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18 (2006) 2101–2104.

DOI: 10.1002/adma.200502422

Google Scholar

[19] S. Joo, D.F. Baldwin. Performance of silver nano particles as an electronics packaging interconnects material. Elec. Comp. C (2007) 212–226.

DOI: 10.1109/ectc.2007.373801

Google Scholar

[20] A. C. Siegel, S. T. Phillips , M. D. Dickey , N. Lu , Z. Suo , G. M. Whitesides. Printable Electronics: Foldable Printed Circuit Boards on Paper Substrates, Adv. Funct. Mater. 20 (2010) 28.

DOI: 10.1002/adfm.200990114

Google Scholar

[21] A. Rida , L. Yang , R. Vyas , M. M. Tentzeris. Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications, IEEE Antennas Propagation Mag. 51 (2009) 13-23.

DOI: 10.1109/map.2009.5251188

Google Scholar

[22] M. Layani, S. Magdassi. Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature, J. Mater. Chem. 21 (2011) 15378–15382.

DOI: 10.1039/c1jm13174e

Google Scholar

[23] M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi. Conductive inks with a built-in, mechanism that enables sintering room temperature, ACS Nano 5 (2011) 3354-3359.

DOI: 10.1021/nn2005848

Google Scholar

[24] B. F. Rezaga, M. D. Balela. Sintering of silver nanoparticles at room-temperature for conductive ink applications, Key Engineering Materials 775 (2018) 144-148.

DOI: 10.4028/www.scientific.net/kem.775.144

Google Scholar

[25] Y. Long, J. Wu, H. Wang, X. Zhang, N. Zhao, J. Xu. Rapid sintering of silver nanoparticles in an electrolyte solution at room temperature and its application to fabricate conductive silver films using polydopamine as adhesive layers, J. Mater. Chem. 21 (2011) 4875-4881.

DOI: 10.1039/c0jm03838e

Google Scholar