The Electronic Structure of Ga-Doped Hydrogen-Passivated Germanene: First Principle Study

Article Preview

Abstract:

Germanene, which has the same structure as graphene, is an exciting novel 2D functionalized material that controls its band gap using functionalization. The effects of the Ga atom and hydrogen atoms on the structure of Ga-doped H-passivated germanene were investigated with a density functional theory (DFT) calculation. H-passivated germanene has a direct gap of 2.10 eV. Opening the band gap in the H-passivated germanene is due to transition from sp2 to sp3 orbital. Adsorption of the Ga adatom on H-site decrease the band gap to 1.38 eV. No interaction between Ga atoms and Hydrogen atoms was observed. Hence, their effects on the band structure of hydrogenated graphene were independent of each other. Our results suggest that hydrogen passivation combined with adsorption of the Ga adatoms could effectively control the band gap of germanene.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-161

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Meher Abhinav, E., Chandrasekaran, G. & Kasmir Raja, S. V. Appl. Surf. Sci. 418 (2017) 308.

Google Scholar

[2] Mortazavi, B., Dianat, A., Cuniberti, G. & Rabczuk, T. Electrochim. Acta 213 (2016) 865.

Google Scholar

[3] Rupp, C. J., Chakraborty, S., Anversa, J., Baierle, R. J. & Ahuja, R. ACS Appl. Mater. Interfaces 8 (2016) 1536.

Google Scholar

[4] Gupta, S. K., Singh, D., Rajput, K. & Sonvane, Y. RSC Adv. 6 (2016) 102264.

Google Scholar

[5] Monshi, M. M., Aghaei, S. M. & Calizo, I. Surf. Sci. 665 (2017) 96.

Google Scholar

[6] Zhu, L., Chang, X., He, D., Xue, Q. & Li, X. Nanotechnology 28 (2017) 135703.

Google Scholar

[7] Ye, M. et al. Phys. E Low-Dimensional Syst. Nanostructures 59 (2014) 60.

Google Scholar

[8] Balendhran, S., Walia, S., Nili, H., Sriram, S. & Bhaskaran, M. Small 11 (2015) 640.

DOI: 10.1002/smll.201402041

Google Scholar

[9] Xiao, P., Fan, X. L. & Liu, L. M. Comput. Mater. Sci. 92 (2014) 244.

Google Scholar

[10] Ma, Y., Dai, Y., Niu, C. & Huang, B. J. Mater. Chem. 22 (2012) 12587.

Google Scholar

[11] Si, C. et al. Phys. Rev. B - Condens. Matter Mater. Phys. 89 (2014) 115429.

Google Scholar

[12] Kaloni, T. P., Schreckenbach, G., Freund, M. S. & Schwingenschlogl, U. Phys. Status Solidi - Rapid Res. Lett. 10 (2016) 133.

Google Scholar

[13] Pang, Q., Li, L., Zhang, C.-L., Wei, X.-M. & Song, Y.-L. Mater. Chem. Phys. 160 (2015) 96.

Google Scholar

[14] Pang, Q. et al. Appl. Surf. Sci. 314 (2014) 15.

Google Scholar

[15] Nagarajan, V. & Chandiramouli, R. Superlattices Microstruct. 101 (2017) 160.

Google Scholar

[16] Xia, W., Hu, W., Li, Z. & Yang, J. Phys Chem Chem Phys 16 (2014) 22495.

Google Scholar

[17] Zhang, R. et al. Phys. Chem. Chem. Phys. 18 (2016) 12169.

Google Scholar

[18] Chen, X. et al. J. Mater. Chem. C 4 (2016) 5434.

Google Scholar

[19] Bayani, A. H., Dideban, D. & Moezi, N. Superlattices Microstruct. 100 (2016) 198.

Google Scholar

[20] Yan, J.-A., Gao, S.-P., Stein, R. & Coard, G. Phys. Rev. B 91 (2015) 245403.

Google Scholar

[21] Dhar, N., Bandyopadhyay, A. & Jana, D. Curr. Appl. Phys. 17 (2017) 573.

Google Scholar

[22] Gonze, X. et al. Comput. Mater. Sci. 25 (2002) 478.

Google Scholar

[23] Martin Fuchs, M. S. Computer Physics Communications 119 (1999) 67.

Google Scholar

[24] Perdew, J. P., Kieron, B. & Ernzerhof, M. Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[25] Pack, J. D. & Monkhorst, H. J. Phys. Rev. B 13 (1976) 5188.

Google Scholar

[26] Li, X., Wu, S., Zhou, S. & Zhu, Z. Nanoscale Res. Lett. 9 (2014) 110.

Google Scholar

[27] Li, S. et al. Phys. Chem. Chem. Phys. 16 (2014) 15968.

Google Scholar

[28] Lebègue, S. & Eriksson, O. Phys. Rev. B 79 (2009) 115409.

Google Scholar

[29] Houssa, M. et al. Appl. Phys. Lett. 98 (2011) 223107.

Google Scholar

[30] Trivedi, S., Srivastava, A. & Kurchania, R. J. Comput. Theor. Nanosci. 11 (2014) 781.

Google Scholar