Electron Spin-Dependent Tunneling Current through a Trapezoidal Potential Barrier under Airy Wavefunction Approach

Article Preview

Abstract:

In this paper, an analytical expression of the electron spin-dependent tunneling current through a potential barrier by applying a bias voltage was investigated. An Airy wavefunction was applied to derive the transmittance through the barrier by considering a zinc-blende material, which depends on the spin states indicated as ‘up’ and ‘down’. The obtained transmittance was employed to compute the polarization and spin-dependent tunneling current. The spin-dependent tunneling current was then observed at various bias voltages and temperatures. It was shown that the spin-polarized current increases as the bias voltage increases. It was also shown that the increase of temperature enhances the spin-dependent tunneling current.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-156

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. A. Harrison: Phys. Rev. Vol. 123 (1961), pp.85-89.

Google Scholar

[2] F. A. Noor, M. Abdullah, Sukirno and Khairurrijal: J. Semicond. Vol. 31 (2010), pp.124002-1/5.

Google Scholar

[3] B. C. Pursley, X. Song, R. O. Torres-Isea, E. A. Bokari, A. Kayani and V. Sih: Appl. Phys. Lett. Vol. 106 (2015) 072403.

DOI: 10.1063/1.4907286

Google Scholar

[4] D. D. Awschalom, M. E. Flatte and N. Samarth: Sci. Am. Vol. 286 (2002), pp.66-73.

Google Scholar

[5] H. Akinaga and H. Ohno: IEEE Trans. Nanotechnology Vol. 1 (2002), pp.19-31.

Google Scholar

[6] B. T. Jonker: Proceedings of the IEEE Vol. 91 (2003), pp.727-740.

Google Scholar

[7] V. I. Perel, S. A. Tarasenko and I. N. Yassievich: Phys. Rev. B Vol. 67 (2003), pp.201304-1/4.

Google Scholar

[8] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip and J. Wees: Phys. Rev. B Vol. 62 (2000), pp. R4790-R4794.

Google Scholar

[9] K. C. Hall,W. H. Lau, K. Gundogdu and M. E. Flatte: Appl. Phys. Lett. Vol. 83 (2003), pp.2937-2939.

Google Scholar

[10] A. Voskoboynikov, S. S. Liu and C. P. Lee: Phys. Rev. B Vol. 58 (1998), pp.15397-15401.

Google Scholar

[11] A. Boda, B. Boyacioglu, U. Erkaslan and A. Chatterjee: Physica B Condens Matter Vol. 498 (2016), pp.43-48.

Google Scholar

[12] H. Dakhlaoui and S. Jaziri: Physica B Vol. 355 (2005), pp.401-407.

Google Scholar

[13] N. Lebedeva and P. Kuivalainen: J. Appl. Phys. 93, 9845-9864 (2003).

Google Scholar

[14] K. Michaeli, V. Varade, R. Naaman and D. H. Waldeck, J. Phys: Condens Matter Vol. 29 (2017), pp.103002-1/8.

DOI: 10.1088/1361-648x/aa54a4

Google Scholar

[15] A. B. Suryamas, M. Abdullah and Khairurrijal: Indonesian J. Phys. Vol. 17 (2006), pp.43-46.

Google Scholar

[16] A. B. Suryamas, M. Abdullah and Khairurrijal: Transmittance Coefficient of Electron Tunneling through a Nanometer Thick Square Barrier with Spin Polarization Consideration, International Conference on Mathematics and Natural Sciences (ICMNS) (Bandung, 29-30 November 2006) p.941.

Google Scholar

[17] D. J. BenDaniel and C. B. Duke: Phys. Rev. Vol. 152 (1966), pp.683-691.

Google Scholar

[18] F. A. Noor, M. Abdullah, Sukirno, Khairurrijal, A. Ohta and S. Miyazaki: J. Appl. Phys. Vol. 108 (2010) pp.093711-1/5.

Google Scholar

[19] De Vries P L: A first Course in Computational Physics, John Wiley & Sons, New York (1993).

Google Scholar