Development of a Composite Material Based on Polymers Polydimethylsiloxane and Polytetrafluoroethylene Use in Human Prosthetic Coatings

Article Preview

Abstract:

The purpose of this study is the development of a composite material composed of a main layer of polydimethylsiloxane (PDMS) and a reinforcement of polytetrafluoroethylene (PTFE), to be used later in human prosthesis coatings. A mass ratio of the main layer consisting of PDMS:Tetraethyl orthosilicate (TEOS):Di-n-butyl tin dilaurate (DBTL) in the range of 33:1:0.5; 25:1:0.5; 10:1:0.5, and the mass ratio of the composite material (PTFE:PDMS) with a range was evaluated of 1:9; 1:1; 2:3. Obtaining the following results: Tensile strength of 0.085 MPa based on the ratio of 33:1:0.5 - 1:9 and 0.59 MPa with respect to the ratio of 10:1:0.5 - 2:3, evidencing an increase in tensile strength by decreasing the weight of PDMS and increasing the weight of PTFE. On the other hand, the composite material obtained is hydrophobic, insoluble in ethanol and water, has a cross-linking percentage of 98.74 % and 99.66 % respectively, also has a minimum permeance of 5.24x10-7 (g Pa-1 s-1 m-2). With which it is concluded that the treatment whose properties resemble the human skin is the combination 10:1:0.5 - 1:1 that allowed to obtain an average tensile strength of 0.66 MPa, average modulus of elasticity of 6.56 MPa, similar to the dermis of a 43 year old person.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Arima , V., Bianco , M., & Zach, A. (2012). Fluoropolymers coatings on polydimethylsiloxane for retarding swelling in toluene. Elsevier, 2293–2300.

DOI: 10.1016/j.tsf.2011.09.063

Google Scholar

[2] ASTM D638. (2002). Standard Test Method for Tensile Properties of Plastics.

Google Scholar

[3] ASTM E96. (2000). Standard Test Methods for Water Vapor Transmission of Materials ASTM E96 - 00.

Google Scholar

[4] Camacho Ramírez , A., Díaz Godoy, A., Martínez Viera, A., Calvo Durán , A., De la Vega , O., Balbuena García , M., . . . Vega Ruiz , V. (2013). Tipos de biomateriales. Clasificaciones actuales. Tipos de prótesis actuales. . Criugía Andaluza, 228 - 232.

Google Scholar

[5] Chugá Chamoro, V. V. (2011). Acabado a base de microemulsión de silicona como retardante de fuego en las prendas de vestir. Ibarra: Universidad Técnica del Norte.

Google Scholar

[6] Duffo, G. S. (2011). Biomateriales. Materiales y materia prima. (Vol. Colección Encuentro Inet.). Buenos Aires , Argentina : Eudeba.

Google Scholar

[7] Guerrero Vaca, G. (2013). Análisis comparativo de los procesos de eliminación de recubrimientos antiadherentes fluoropoliméricos en superficies metálicas entre tecnologías láser y pirolíticas. Cordóba: Servicio de Publicaciones de la Universidad de Málaga SPICUM.

DOI: 10.4995/thesis/10251/88391

Google Scholar

[8] Heonjoo Ha, H., Jaesung , P., KiRyong , H., & Benny , D. (2016). Synthesis and gas permeability of highly elastic poly(dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers. Polymers.

DOI: 10.1016/j.polymer.2016.04.016

Google Scholar

[9] Meléndez Zamudioa, M. A., Villegas Gascaa, J. A., & Cervantes Jáureguia, R. (2016). POLISILOXANOS: Materiales para aplicaciones de ata tecnología. Participación de la Mujer en la Ciencia. XII ecuentro. Guanajuato: Centro de investigaciones en optica. A. C.

DOI: 10.2307/j.ctv8bt39d.15

Google Scholar

[10] Nachman , M., & S.E., F. (2016). Artificial SkinModelsimulatingdryandmoist in vivo human skin friction anddeformationbehaviour. Elsevier TribologyInternational, 97, 431–439.

Google Scholar

[11] Qian-Zhi , Z., Bing - Bing, L., Peng-Xian, L., Da-Yong , L., Ping , Y., & De , S. (28 de Diciembre de 2015). Pervaporation of acetone/water mixture by PDMS-PTFE/PVDF composite. Desalination and Water Treatment. doi:.

DOI: 10.1080/19443994.2015.1137785

Google Scholar

[12] Seghir, R., & Arscott, S. (2015). Extended PDMS stiffness range for flexible systems. Elsevier Sensors and Actuators A: Physical, 230, 33 - 39.

DOI: 10.1016/j.sna.2015.04.011

Google Scholar

[13] Sun, D., Bing-Bing, L., & Zhen-Liang , X. (2013). Preparation and characterization of poly(dimethylsiloxane)- (PDMS-PTFE) composite membrane for pervaporation of chloroform from aqueous solution. Korean Journal of Chemical Engineering, 2059 - (2067).

DOI: 10.1007/s11814-013-0147-z

Google Scholar

[14] Tropmann, A., Tanguy, L., Koltay, P., Zengerle, R., & Riegger, L. (2012). Completely Superhydrophobic PDMS Surfaces for Microfluidics. Lagmuir American Chemical Society.

DOI: 10.1021/la301283m

Google Scholar

[15] Van Kuilenburg, J., Masen , M., & Van der Heide, E. (2012). Contact modelling of human skin: What value to use for the modulus of elasticity. Journal of Engineering Tribology, 349–361.

DOI: 10.1177/1350650112463307

Google Scholar

[16] Vera Craziano , R., Hernandez Sanchez , F., & Cauich Rodriguez , J. (1995). Study of Crosslinking Density in Polydimethylsiloxane Networks by DSC. Journal of Applied Polymer Science, 55, 1317-1327.

DOI: 10.1002/app.1995.070550905

Google Scholar

[17] Wang, Z. (2011). Polydimethylsiloxane Mechanical Properties Measured by Macroscopic Compression and Nanoindentation Techniques. Scholar Commons Citation.

Google Scholar