LiMn1.5Ni0.25Fe0.2M0.05O4 Nanoparticles as a Cathode Material for Rechargeable Li-Ion Batteries

Article Preview

Abstract:

New series of spinel LiNi0.25Fe0.20.05Mn1.5O4 (Mˊ = Cu, Mg or Zn) cathode materials have been purposefully tailored using sol-gel auto-combustion method at low annealing temperature ~ 700°C for 3 h. The XRD analysis showed that all substituted (LNFMO-Mˊ) samples are comported with the main structure of undoped (LNFMO) with crystalline disordered spinel Fd-3m structure. TEM images revealed the octahedron-shape like morphology for the particles and the LNFMO-Zn sample has the widest particle size distribution. EIS spectra evidenced that a typical one semicircle (LNFMO-Mg) was revealed for each cell, suggesting the absence of ionic conductivity contribution. The values of charge transfer resistance (Rct) were equal to 9.3, 6.7, 6.0 and 4.4 kΩ for LNFMO, LNFMO-Cu, LNFMO-Mg indicating that the Zn-doped sample has the fastest kinetic diffusion rate and lowest activation energy of conduction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-154

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bhaskar et al: Prog. Solid State Chem., vol. 42, no. 4 (2014), p.128–148.

Google Scholar

[2] H. Liu et al.: J. Phys. Chem. C, vol. 121, no. 30 ( 2017), p.16079–16087.

Google Scholar

[3] Y.-F. Deng, S.-X. Zhao, P.-Y. Zhai, G. Cao, and C.-W. Nan: J. Mater. Chem. A, vol. 3, no. 40 (2015), p.20103–20107.

Google Scholar

[4] H. Liu et al: ACS Appl. Mater. Interfaces, vol. 8, no. 7 (2016), p.4661–4675.

Google Scholar

[5] O. Sha et al.: Mater. Res. Bull., vol. 48, no. 4 (2013), p.1606–1611.

Google Scholar

[6] E.-S. Lee and A. Manthiram: J. Mater. Chem. A, vol. 1, no. 9 (2013), p.3118.

Google Scholar

[7] N. Kiziltas-Yavuz et al.: J. Power Sources, vol. 327 (2016), p.507–518.

Google Scholar

[8] G. B. Zhong, Y. Y. Wang, Y. Q. Yu, and C. H. Chen : J. Power Sources, vol. 205 (2012), p.385–393.

Google Scholar

[9] J.-H. Kim, S.-T. Myung, C. S. Yoon, S. G. Kang, and Y.-K. Sun : Chem. Mater., vol. 16, no. 10 (2004), p.906–914.

Google Scholar

[10] N. Mokhtar and N. H. Idris : Mater. Today Proc., vol. 3, no. Icfmd 2015 (2016), p. S129–S135.

Google Scholar

[11] Y. Xue, Z. Wang, F. Yu, Y. Zhang, and G. Yin : J. Mater. Chem. A, vol. 2, no. 12 (2014), p.4185.

Google Scholar

[12] Z. Wang, J. Du, Z. Li, and Z. Wu : Ceram. Int., vol. 40, no. 2 (2014), p.3527–3531.

Google Scholar

[13] N. Ross et al. : Electrochim. Acta, vol. 128 (2014), p.178–183.

Google Scholar

[14] A. O. Turky, M. M. Rashad, A. M. Hassan, E. M. Elnaggar, and M. Bechelany : Phys. Chem. Chem. Phys., vol. 19, no. 9 (2017), p.6878–6886.

DOI: 10.1039/c6cp07333f

Google Scholar

[15] R. Amin and I. Belharouk: J. Power Sources, vol. 348 (2017), p.311–317.

Google Scholar

[16] L. Wang, D. Chen, J. Wang, G. Liu, W. Wu, and G. Liang : Powder Technol., vol. 292 (2016), p.203–209.

Google Scholar

[17] M. M. S. Sanad, H. A. Abdellatif, E. M. Elnaggar, G. M. El-Kady, and M. M. Rashad : Appl. Phys. A, vol. 125, no. 2 (2019), p.139.

Google Scholar