Study of the Reduction of Fe on Reduced Graphene Oxide as a Catalyst for Carbon Monoxide Reduction

Article Preview

Abstract:

This work aims at optimizing the H2 reduction time of Fe/rGO as a preparatory step for the use of the reduced catalyst in Fisher-Tropsch synthesis (FTS). The catalytic system used was Iron Nanoparticles (NPs) loaded on reduced graphene oxide (rGO) support. The as prepared sample was analyzed by TEM, FTIR and XRD spectroscopy. Samples of the produced Fe/rGO catalyst were used to optimize the reduction conditions in the FBR reactor. The three samples were reduced under 1atm H2 gas flow of 50 sccm at 500°C for 8, 12 and 24 hrs. The samples were collected after reduction and analyzed by XRD, FTIR and TEM imaging. The best condition showing full reduction with minimal sintering was at 12hr.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-134

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.-D. Lee, J.-F. Lee, C.-S. Chang, and T.-Y. Dong: Appl. Catal. Vol. 72 (1991), p.267–281.

Google Scholar

[2] S. O. Moussa, L. S. Panchakarla, M. Q. Ho, and M. S. El-Shall: ACS Catal. Vol. 4(2014), p.535–545.

Google Scholar

[3] Y. Cheng, J. Lin, T. Wu, H. Wang, S. Xie, Y. Pei, S. Yan, M. Qiao, and B. Zong: Appl. Catal. B Environ. Vol. 204 (2017) p.475–485.

Google Scholar

[4] Y.Yoneyama, J. He, Y. Morii, S. Azuma, and N. Tsubaki: Catal. Today (2005)Vol.104 p.37–40.

Google Scholar

[5] V. A. de la Peña O'Shea, M. C. Álvarez-Galván, J. M. Campos-Martín, and J. L. G. Fierro: Appl. Catal. A Gen. Vol. 326 (2007) p.65–73.

Google Scholar

[6] M. Luo and B. H. Davis: Appl. Catal. A Gen. Vol. 246 (2003) p.171–181.

Google Scholar

[7] C. H. Zhang, H. J. Wan, Y. Yang, H. W. Xiang, and Y. W. Li: Catal. Commun. Vol. 7 (2006) p.733–738.

Google Scholar

[8] E. Ghoniem, S. Mori, and A. Abdel-Moniem: J. Power Sources Vol. 324 (2016) p.272–281.

Google Scholar

[9] M. Gamil, H. Nageh, I. Bkrey, S. Sayed, A. M. R. F. El-bab, K. Nakamura, O. Tabata, and A. A. El-moneim: Sensors Mater. Vol. 26 (2014) p.699–709, (2014).

Google Scholar

[10] S. Li, A. Li, S. Krishnamoorthy, and E. Iglesia: Catal. Letters Vol. 77 (2001) p.197–205.

Google Scholar

[11] B. Sun, Z. Jiang, D. Fang, K. Xu, Y. Pei, S. Yan, M. Qiao, K. Fan, and B. Zong: ChemCatChem Vol. 5 (2013) p.714–719, (2013).

DOI: 10.1002/cctc.201200653

Google Scholar

[12] A. H. M. Nasser, H. M. Elbery, H. N. Anwar, I. K. Basha, H. A. Elnaggar, K. Nakamura, and A. A. El-Moneim: Key Eng. Mater. Vol. 735 (2017) p.143–147.

DOI: 10.4028/www.scientific.net/kem.735.143

Google Scholar

[13] W. Chen, X. Pan, and X. Bao: J. Am. Chem. Soc. Vol. 129 (2007) p.7421–7426.

Google Scholar

[14] A.-H. Nasser, L. Guo, H. ELnaggar, Y. Wang, X. Guo, A. AbdelMoneim, and N. Tsubaki: RSC Adv. Vol. 8 (2018) p.14854–14863.

DOI: 10.1039/c8ra02193g

Google Scholar

[15] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen: ACS Nano Vol. 2 (2008) p.463–470.

Google Scholar

[16] W. S. Hummers and R. E. Offeman: J. Am. Chem. Soc. Vol. 80 (1958) p.1339–1339.

Google Scholar

[17] A. Nasser, H. El-naggar, and A. Abdelmoneim: RSC Adv. Vol. 8 (2018) p.42415–42423.

Google Scholar