Structural Properties and Capacitive Performance of Cathodically Deposited Manganese Dioxide Film on Electrophoretically Deposited Reduced Graphene Oxide

Article Preview

Abstract:

The structural properties and capacitive behavior of manganese dioxide (MnO2) films prepared by potentiostatic cathodic deposition were examined in presence and absence of pre-electrophoretically deposited reduced graphene oxide (rGO) film. The FTIR analysis reflects the formation of a MnO2/rGO composite film structure. SEM and TEM characterization show that the MnO2 film deposited on rGO film has finer and less compact nanostructure and grown as sparsely aggregated particles follow the open structure of underlying rGO platelets. The specific capacitance and rate capability of MnO2/rGO film are higher than that of pristine MnO2 film; it exhibits specific capacitance of 292 Fg-1 at 1 mA cm-2 and better cyclic stability at 3 mA cm-2. The presence of 3D underlying defective rGO film creates an open structure with larger area, facilitates the electron transfer and access of the electrolyte ions through the surface of MnO2 film and hence offering the potential of the unique capacitive behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sumaiyah, N  and  Emre, E., Current progress achieved in novel materials for supercapacitor electrodes: mini review; Nanoscale Adv., 2019, 1, 2817.

DOI: 10.1039/c9na00345b

Google Scholar

[2] Pang, S.-C.; Anderson, M. A., Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films. Journal of Materials Research 2000, 15 (10), 2096-2106.

DOI: 10.1557/jmr.2000.0302

Google Scholar

[3] El-Moneim, A. A.; Kumagai, N.; Asami, K.; Hashimoto, K., New nanocrystalline manganese-molybdenum-tin oxide anodes for oxygen evolution in neutral seawater electrolysis. ECS Transactions, ECS Transaction 2005, 1(4), 491-497.

DOI: 10.1149/1.2215532

Google Scholar

[4] El-Moneim, A. A.; Bhattarai, J.; Kato, Z.; Izumiya, K.; Kumagai, N.; Hashimoto, K., Mn-Mo-Sn oxide anodes for oxygen evolution in seawater electrolysis for hydrogen production. ECS Transactions 2010, 25(40), 127-137.

DOI: 10.1149/1.3422589

Google Scholar

[5] El-Moneim, A. A.; Mn-Mo-W-oxide anodes for oxygen evolution during seawater electrolysis for hydrogen production: effect of repeated anodic deposition. Int. J. of Hydrogen Energy; 36, 2011, 13398-13406.

DOI: 10.1016/j.ijhydene.2011.07.100

Google Scholar

[6] El-Moneim, A. A.; Kumagai, N.; Asami, K.; Hashimoto, K., MnMoW-oxide anode for oxygen evolution in seawater electrolysis for hydrogen production. Materials Trans., 66, 2009, 1969-1977.

DOI: 10.2320/matertrans.m2009107

Google Scholar

[7] Hassan, S.; Suzuki, M.; El-Moneim, A., Capacitive behavior of manganese dioxide/stainless steel electrodes at different deposition current densities. American Journal of Materials Science 2012, 2 (2), 11-14.

DOI: 10.5923/j.materials.20120202.03

Google Scholar

[8] Ali, G. A. M.; Yusoff, M. M.; Ng, Y. H.; Lim, H. N.; Chong, K. F., Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study. Current Applied Physics 2015, 15 (10), 1143-1147.

DOI: 10.1016/j.cap.2015.06.022

Google Scholar

[9] Yuqiu, H; Hongcheng, Z, In Cathodic potentiostatic electrodeposition and capacitance characterization of manganese dioxide film, International Conference on Nanotechnology and Biosensors IPCBEE, Singapore, IACSIT Press: Singapore, (2011).

Google Scholar

[10] El-Moneim, A. A.; M., B. M., New composite anodes for oxygen evolution during seawater electrolysis. International Journal of Electrochemical Science 2012, 7, 671 – 685.

Google Scholar

[11] Hassan, S.; Suzuki, M.; El-Moneim, A. A., Synthesis of MnO2-chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application. Journal of Power Sources 2014, 246, 68-73.

DOI: 10.1016/j.jpowsour.2013.06.085

Google Scholar

[12] Hassan, S.; Suzuki, M.; Mori, S.; El-Moneim, A. A., MnO2/carbon nanowalls composite electrode for supercapacitor application. Journal of Power Sources 2014, 249 (0), 21-27.

DOI: 10.1016/j.jpowsour.2013.10.097

Google Scholar

[13] Ingy Bakry, S. Mori and A. A. El-Moneim, Low-cost Flexible Supercapacitors Based on Laser Reduced Graphene Oxide Supported on PET Substrate; Journal of Power Sources; 324, 2016, 272-281.

DOI: 10.1016/j.jpowsour.2016.05.069

Google Scholar

[14] Zhao,Y.-Q.; Zhao, D.-D.; Tang, P.-Y.; Wang, Y.-M.; Xu, C.-L.; Li, H.-L., MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy. Materials Letters 2012, 76 (Supplement C), 127-130.

DOI: 10.1016/j.matlet.2012.02.097

Google Scholar

[15] Hummers, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[16] Gebert, A., El-Moneim, A. A., Gutfleisch, O., Schultz, L. Corrosion behavior of textured and isotropic nanocrystalline NdFeB-based magnets. IEEE Transactions on Magnetics, 2002, 38(5 I), 2979-2981.

DOI: 10.1109/tmag.2002.803100

Google Scholar

[17] Mohammed, G. ; Koichi, N. ; Fath El-Bab, A. R. ; Osamu, T. ; El-Moneim, A. A., Investigation of a new high sensitive micro-electromechanical strain gauge sensor based on graphene piezoresistivity; Key Engineering Materials 605, 2014, 207-210.

DOI: 10.4028/www.scientific.net/kem.605.207

Google Scholar

[18] Mohammed, G.; Sahour, S.; Ingy. B. ; Koichi, N. ; Fath El-Bab, A.; Osamu, T. ; El-Moneim, A. A., New flexible graphene-based strain gauge sensor. Sensors and Materials; 26(9), 2014, 699-709.

DOI: 10.1108/sr-07-2015-0114

Google Scholar

[19] Julien, C. M.; Massot, M.; Poinsignon, C., Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2004, 60 (3), 689-700.

DOI: 10.1016/s1386-1425(03)00279-8

Google Scholar

[20] Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman spectroscopy of carbon nanotubes. Physics reports. 2005, 409 (2), 47.

DOI: 10.1016/j.physrep.2004.10.006

Google Scholar

[21] Mori, S.; Ueno, T.; Suzuki, M., Synthesis of carbon nanowalls by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system. Diamond and Related Materials 2011, 20 (8), 1129-1132.

DOI: 10.1016/j.diamond.2011.06.021

Google Scholar

[22] Devaraj, S.; Munichandraiah, N., The effect of nonionic surfactant Triton X-100 during electrochemical deposition of MnO2 on its capacitance properties. Journal of Electrochemical Society 2007, 154 (10), A901-A909.

DOI: 10.1149/1.2759618

Google Scholar

[23] Celzard, A.; Collas, F.; Marêché, J. F.; Furdin, G.; Rey, I., Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance. Journal of Power Sources 2002, 108, 153.

DOI: 10.1016/s0378-7753(02)00030-7

Google Scholar