Aluminum Surface Inclusions of Insoluble Lead Enhanced through Mechanical Attrition of Al Substrates

Article Preview

Abstract:

Preparation of aluminum substrates for surface segregation enhancement of insoluble lead deposition was achieved. Sever plastic deformation 'SPD' of Al sheets was done using surface mechanical attrition treatment 'SMAT' in air. Scanning electron microscope SEM of etched Al substrates cuts showed micro-cavities both on the surface and in-depth. Orientation effects and surface inclusions of Pb inside Al surface found at 40 and 50 Hz - SMAT Al by X-Ray diffraction and energy dispersive of X-Rays EDX. Concluding that SMAT frequency limits used enhanced surface inclusions without annealing that could improve adhesion of industrial protective Pb coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-100

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Advanced Plating Technologies US. http://www. advancedplatingtech.com//lead-plating-services/.

Google Scholar

[2] Electronic Precision Specialists Inc. http://www.elecprec.com/index.html, tin-lead-plating-services.html.

Google Scholar

[3] Yuntian Zhu, Ruslan Z. Valiev, Terence G. Langdon, Nobuhiro Tsuji, and Ke Lu, Processing of nanostructured metals and alloys via plastic deformation, MRS Bull, 35 Dec, 977 (2010).

DOI: 10.1557/mrs2010.702

Google Scholar

[4] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mat. Sci. & Eng. A 375-377 (2004) 38 - 45.

DOI: 10.1016/j.msea.2003.10.261

Google Scholar

[5] Nairong Tao, Hongwang Zhang, Jian Lu and Ke Lu, Development of Nanostructures in Metallic Materials with Low Stacking Fault Energies During Surface Mechanical Attrition Treatment (SMAT), Mat. Trans. 44 No. 10 (2003)1919-1925.

DOI: 10.2320/matertrans.44.1919

Google Scholar

[6] N. R. Tao, J. Lu and K. Lu, Surface Nanocrystallization by Surface Mechanical Attrition Treatment, Mat. Sci. Forum. 579 (2008) 91-108.

DOI: 10.4028/www.scientific.net/msf.579.91

Google Scholar

[7] W.P. Tong, C.Z. Liu, W. Wang, N.R. Tao, Z.B. Wang, L. Zuo and J.C. He, Gaseous nitriding of iron with a nanostructured surface layer, Scripta Mater. 57 (2007) 533-536.

DOI: 10.1016/j.scriptamat.2007.05.017

Google Scholar

[8] W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu, Nitriding Iron at Lower Temperatures, Science, 299 31 Jan. (2003) 686-688.

DOI: 10.1126/science.1080216

Google Scholar

[9] D. Atta, M.R. Ebrahim, K.A. Eid, and E. Al-Ashkar, Spectroscopic Analysis of Severe Plastically Deformed Raw Al Rolled Sheet, Quantum Matter, 5 (2016) 1.

DOI: 10.1166/qm.2016.1289

Google Scholar

[10] M. R. Ebrahim, A. E. El Meleigy, Sh. E. Abd El hamid & A. A. El warraky, Improving Corrosion Resistance of Al through Sever Plastic Deformation 1-under Free Condition, Egypt. J. of Chem. 59 No.4 (2016) 737-555.

DOI: 10.21608/ejchem.2016.1413

Google Scholar

[11] A. E. El Meleigy, M. R. Ebrahim, Sh. E. Abd El hamid & A. A. El warraky, Improving Corrosion Resistance of Al through Sever Plastic Deformation 2-under Accelerated Condition, Egypt. J. of Chem. 59 No. 4 (2016) 557-571.

DOI: 10.21608/ejchem.2016.1415

Google Scholar

[12] E. Johnson, M.T. Levinsen, S. Steenstrup, S. Prokofjev, V. Zhilin, U. Dahmen and T. Radetic, One-dimensional random walk of nanosized liquid Pb inclusions on dislocations in Al, Phil. Mag., 84, 1-11 Sep. 25–26 (2004) 2663-2673.

DOI: 10.1080/14786430410001671412

Google Scholar

[13] E. Johnson, S. Steenstrup, M. Levinsen, V. Prokofjev, V. Zhilin, U. Dahmen, Brownian motion of liquid lead inclusions along dislocations in aluminum, J. of Mat. Sci. 40 (2005) 3115-3119.

DOI: 10.1007/s10853-005-2672-6

Google Scholar

[14] Asghar Heydari Astaraee, Reza Miresmaeili, Sara Bagherifard, Mario Guagliano, Mahmood Aliofkhazraei, Incorporating the principles of shot peening for a better understanding of surface mechanical attrition treatment (SMAT) by simulations and experiments, Materials and Design, 116, 15 Feb (2017) 365-373.

DOI: 10.1016/j.matdes.2016.12.045

Google Scholar

[15] L. Margulie, G. Winther, H. F. Poulsen, In situ measurement of grain rotation during deformation of polycrystals, Science, 291, Issue 5512 (2001)2392.

DOI: 10.1126/science.1057956

Google Scholar

[16] D. Lombardo, P. Bailey, The Reality of Shot Peen Coverage, The Shot Peener mag., 13, Issue 4, winter (1999).

Google Scholar

[17] D. Kirk and M.Y. Abyaneh, Theoretical Basis of Shot Peening Coverage Control, The Shot Peener mag., 13, Issue 3, Fall (1999).

Google Scholar

[18] Y.N. Shi, Z. Han, Tribological behaviors of nanostructured surface layer processed by means of surface mechanical attrition treatment Key Eng. Mat. 384 (2008) 321-334.

DOI: 10.4028/www.scientific.net/kem.384.321

Google Scholar

[19] E. Johnson, J.S. Andersen, M. Levinsen, S. Steenstrup, S. Prokofjev, V. Zhilin, U. Dahmen, T. Radetic, J.H. Turner, Random vibration movements of liquid nanosized Pb inclusions in Al, Mat. Sci.& Eng. A 375–377 (2004) 951-955.

DOI: 10.1016/j.msea.2003.10.076

Google Scholar

[20] David M. Saylor, Bassem El Dasher, Ying Pang, Herbert M. Miller, Paul Wynblatt, Anthony D. Rollett, and Gregory S. Rohrer, Habits of Grains in Dense Polycrystalline Solids, J. Am. Ceram. Soc. 87 Issue 4 (2004) 724-726.

DOI: 10.1111/j.1551-2916.2004.00724.x

Google Scholar