Production of Ferrosilicoaluminium from Aluminum Slag and Local Ore Via Carbothermic Reduction

Article Preview

Abstract:

This paper deals with the possibility of obtaining FeSiAl complex alloy by carbothermic reduction in a submerged arc furnace using aluminum dross, mill scale and feldspar.Bench scale experiments are carried out to clarify the effect of different variants such as reducing agent, basicity, and mill scale content of the charge on the metallic yield and chemical composition of the produced alloy.It was possible to get FeSiAl alloy containing 22% Si and 18% Al. the results reveal that to obtain such alloy less than 20% mill scale must be involved in the charge and the coke with amount 1 stoichiometric must be used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-82

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kim, D. Suh and N. J. Kim, Fe-Al-Mn-C lightweight structural alloys: a review on microstructures and mechanical properties, Science and Technology of Advanced Materials 14.1 (2013) 014205.

DOI: 10.1088/1468-6996/14/1/014205

Google Scholar

[2] 2-M. Zh. Toymbekov, A.B. Akhmetov, S.O. Baisanov, E.A. Ogurtsov, D.M. Zhiembaeva. Production and use of complex ferroalloys in metallurgy, Steel in Transaction 39. 5 (2009) 416-419.

DOI: 10.3103/s0967091209050131

Google Scholar

[3] N. A. Nazarbaev, V. S. ShkOlnik, A. A. Zharmenov, M. Z. Tolymbekov, S.O. Baisanov, Kazakhastanskiy. US patent 2011/0044845. (2011).

Google Scholar

[4] A. Mekhtiyev, A. Akhmetov, V. Yudakova, F. Bulatbayev. Experience with ferrosilicoaluminum alloy during deoxidation of steel, Metalurgija 55. 1 (2016) 47-50.

Google Scholar

[5] M. Zh. Tolymbekov, A. B. Akhmetov, S. O. Baisanov, E. A. Ogurtsov, D. M. Zhiembaeva. Production and use of complex ferroalloys in metallurgy, Steel in translation 39. 5 (2009) 416-419.

DOI: 10.3103/s0967091209050131

Google Scholar

[6] V.S. Shkolnik, A.A. Zharmenov, M. Zh. Tolymbekov, S.O. Baisanov, A.F. Chekimbaev. Prospects of production complex aluminum silicon alloy, The thirteenth International Ferroalloys Congress: Efficient technologies in ferroalloy industry, Almaty, Kazakhstan. 9-12 June (2013) 311-316.

Google Scholar

[7] S. O. Baisanov, M. Zh. Tolymbekov, A. A. Zharmenov, A. F. Chekimbaev, and A. Zh. Terlikbaeva. Using Clay Rock in Smelting Ferrosilicoaluminum, Steel in Translation 38. 8 (2008) 668–670.

DOI: 10.3103/s0967091208080202

Google Scholar

[8] А.K. Nurumgaliev, А.К. Тоrgovets, U.I. Shishkin. Technology development of smelting complex ferroalloy from nonstandard raw material, Metal. 15.1 (2008) 1-9.

Google Scholar

[9] V. Omelchenko, O.V. Mach, Y.V. Kostetskiy, K.L. Shpilevoy. Studing of Opportunities Production Ferroaluminium Silicon from Nepheline Ore, Proceeding of International Symposiums & Workshops on Metallurgy, Ostrava, Czech republic. (2009) ea.donntu.edu.ua.

Google Scholar

[10] M. Ridderbusch, B. Jaroni, A. Arnold, and B. Friedrich. From Oxide Residues of Al-slag-treatment to SiAl-masteralloys via carbothermic reduction, Proceedings of European Metallurgical Conference EMC. Innsbruck, Austria June 28 - July 1 (2009).

Google Scholar

[11] R. C. Gupta. Theory and Laboratory Experiments in Ferrous Metallurgy, published by Prentice Hall of India, New Delhi. ISBN 978-81-203-3924-8, (2010) p.344.

Google Scholar

[12] V. Raghavan. Al-Fe-Si (aluminum-iron-silicon), Journal of phase equilibria and diffusion 30. 2 (2009) 184-188.

DOI: 10.1007/s11669-009-9486-1

Google Scholar

[13] J. P. MURRAY, Aluminum Production Using High Temperature Solar Process Heat. Solar Energy, 66. 2 (1999) 133–142.

DOI: 10.1016/s0038-092x(99)00011-0

Google Scholar