Carbon Materials for Immobilization of Biologically Active Substances

Article Preview

Abstract:

The paper considers applications of carbon materials as carriers of biologically active substances. The atomic layer deposition method allowed chemically synthesizing surface-modified composite materials based on graphite and carbon fibers, which maximally preserved the activity of enzymes and biologically active substances. It is shown that the activity of a biologically active substance depends on the chemical composition and state of the surface of carbon-based carriers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-57

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.E. Kogan, K.G. Karapetyan, Phosphate glasses as a basis of ecologically safe fertilizers of prolonged action and biosorbents-hydrocarbon destructors, Int. multidisciplinary scientific geoconference surveying geology and mining ecology management, SGEM, 18(5.1) (2018) 637–644.

DOI: 10.5593/sgem2018/5.1/s20.082

Google Scholar

[2] P'Yanova, L.G.,, Sedanova, A.V.,. Drozdetskaya, M.S. Synthesis and Research of Modified Carbon Sorbents with Hydroxy Acids (2016) International Conference on Oil and Gas Engineering, OGE 2016; Omsk State Technical UniversityOmsk; Russian Federation vol 152 pp.639-646.

DOI: 10.1016/j.proeng.2016.07.668

Google Scholar

[3] P'Yanova, Kornienko, N.V., Suprunyuk, V.A., Study of the adsorption properties of molded carbon sorbents in relation to organic dyes in model conditions. AIP Conference Proceedings (2019) Volume 2143 N 020006.

DOI: 10.1063/1.5122905

Google Scholar

[4] I.V Pleskunov, A.G. Syrkov, Development of research of low-dimension metal-containing systems from P.P. Weymarn to our days, J. of mining instit. 231 (2018) 287–291.

Google Scholar

[5] Basso A. Industrial applications of immobilized enzymes: A review/ Basso A., Serban, S.// Molecular Catalysis -2019 - V.479-110607.

DOI: 10.1016/j.mcat.2019.110607

Google Scholar

[6] T. Kääriäinen, A. Cameron, M.-L. Aäriäinen, K.A. Sherman, Atomic Layer Deposition: Princples, Characteristics, and Nanotechnology Applications, Book, John Wiley and Sons, (2013).

DOI: 10.1002/9781118747407

Google Scholar

[7] V. Miikkulainen, M. Leskelä, M. Ritala, R. Puurunen, Crystallinity Of Inorganic Films Grown By Atomic Layer Deposition: Overview And General Trends, J. Of Applied Physics 113(2) (2013) 021301.

DOI: 10.1063/1.4757907

Google Scholar

[8] Johnson, R.W., Hultqvist, A., Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. (2014) Materials Today, 17 (5), pp.236-246.

DOI: 10.1016/j.mattod.2014.04.026

Google Scholar

[9] Elliott, S.D., Nilsen, O. Reaction mechanisms in ALD of ternary oxides. (2011) ECS Transactions, 41 (2), pp.175-183.

DOI: 10.1149/1.3633666

Google Scholar

[10] Bodalyov, I.S., Malkov A.A., Maslennikova T.P., Krasilin A.A., Malygin A.A. Surface and topochemical reactions in the Atomic Layer Deposition of Titanium Dioxide on a substrate containing structural hydroxyl groups / Mat. Of 2nd International Workshop Atomic Layer Deposition: Russia 2017, pp.30-31. (Ald Russia - 2017) (Saint- Petersburg, Russia, September 24 - 30, 2017). Book Of Abstracts.

Google Scholar

[11] E.O. Drozdov, A.N. Gukova, S.D. Dubrovenskii, A.A. Malygin, Quantum-Chemical Analysis and Experimental Synthesis of Titanium-Vanadium-Containing Coatings on the Silica Surface from a Mixture of TiCl4 and VOCl3 Vapors, Russ. J. of General Chem. 86(9) (2016) 2113–2123.

DOI: 10.1134/s1070363216090231

Google Scholar

[12] Bodalyov, I.S., Malkov, A.A., Maslennikova, T.P., Krasilin, A.A., Malygin, A.A. Mechanism of formation of titanium dioxide crystallites in the reaction of titanium tetrachloride with magnesium hydrosilicate nanotubes (2019) Materials Today Chemistry, 11, pp.156-168.

DOI: 10.1016/j.mtchem.2018.10.013

Google Scholar

[13] Hamilton, N., Wolfram, T., Müller, G.T., Hävecker, M., Kröhnert, J., Carrero, C., Schomäcker, R., Trunschke, A., and Schlögl, R., Catal. Sci. Technol., 2012, vol. 2, no. 7, p.1346. doi 10.1039/C2CY00541G.

DOI: 10.1039/c2cy00541g

Google Scholar

[14] Carrero, C., Kauer, M., Dinse A., Wolfram, T., Hamilton, N., Trunschke, A., Schlögl, R., and Schomäcker, R. Catal. Sci. Technol., 2014, vol. 4, p.786. doi 10.1039/ c3cy00625.

DOI: 10.1039/c3cy00625e

Google Scholar