[1]
S.Z. Zhou, J.H. Tan, W.Z. Peng, etal. Sintering technology of Ti(C,N) base cermets. Transactions of the Nonferrous Metals Society of China, 19(2009):S696-700.
DOI: 10.1016/s1003-6326(10)60134-3
Google Scholar
[2]
P. Ettmayer, H. Kolaska, W. Lengauer, K. Dreyer, Ti(C, N) cermets-metallurgy and properties[J], Int. J. Refract. Met. Hard Mater.13 (1995):343–351.
DOI: 10.1016/0263-4368(95)00027-g
Google Scholar
[3]
Z. Guo, H. Zhong, M.Yang, J. Xiong, W. Wan, M. Liang, Microstructure and properties of the Ti(C,N)-xMo2C-Ni cermet/steel joint by a novel diffusion bonding method. Mater. Charact. , 99 (2015):92-100.
DOI: 10.1016/j.matchar.2014.11.022
Google Scholar
[4]
Q. Yang, W. Xiong, G. Zhang, B Huang, Grain growth in Ti(C,N)-based cermets during liquid-phase sintering, J Am. Ceram. Soc., 98(2015):1005-1012.
DOI: 10.1111/jace.13359
Google Scholar
[5]
Y. Zheng, W. Xiong, W. Liu W, Q. Yuan. Effect of nano addition on the microstructures and mechanical properties of Ti(C, N)-based cermets. Ceram. Int., 31(2005):165-170.
DOI: 10.1016/j.ceramint.2004.04.005
Google Scholar
[6]
S.Kim, K. Min, S. Kang, Rim structure in Ti(C0.7N0.3)-WC-Ni cermets, J Am Ceram Soc,86(2003):1761-1766.
DOI: 10.1111/j.1151-2916.2003.tb03551.x
Google Scholar
[7]
W. Hu, Z. Huang, L. Cai, C. Lei, W. Yu, H. Zhai, H., Microstructural characterization and mechanical properties of a novel TiC-based cermet bonded with Ni3(Al,Ti) and NiAl duplexalloy, Mater. Charact, 135 (2018):295-302.
DOI: 10.1016/j.matchar.2017.11.003
Google Scholar
[8]
N. Liu, W. H. Yin, L. W. Zhu, Effect of TiC/TiN powder size on microstructure and properties of and Ti (C,N) hard metals, Mater. Sci. Eng. A. 209(1996):128-136.
Google Scholar
[9]
H. Yu, Y. Liu, Jin Y, J. Ye, Effect of secondary carbides addition on the microstructure and mechanical properties of (Ti,W,Mo,V)(C,N)-based cermets,Int. J. Refract. Met. Hard Mater., 29 (2011): 586-590.
DOI: 10.1016/j.ijrmhm.2011.03.013
Google Scholar
[10]
M. Naidoo, O. Johnson, I. Sigalas, M Herrmann, Preparation of Ti-Ta-(C,N) by mechanical alloying Ti(C,N) and TaC, Int. J. Refract. Met. Hard Mater, 37(2013):67-72.
DOI: 10.1016/j.ijrmhm.2012.10.018
Google Scholar
[11]
X.Chen, W. Xiong, J. Qu, Q. Yang, Z. Yao, Y Huang. Microstructure and mechanical properties of (Ti,W,Ta) C-xMo-Ni cermets. Int. J. Refract. Met. Hard Mater, 31(2012):56-61.
DOI: 10.1016/j.ijrmhm.2011.09.006
Google Scholar
[12]
Z. Fang, G. Lockwood, A. Griffo, A dual composite of WC-Co, Metall. Trans. A, 30(1999): 3231-3237.
DOI: 10.1007/s11661-999-0233-3
Google Scholar
[13]
A. Liu, N. Liu, Effect of WC-Co granules on mechanical properties and microstructure of Ti(C,N)-based cermets, Ceram. Int., 42(2016):15274-15284.
DOI: 10.1016/j.ceramint.2016.06.143
Google Scholar
[14]
ASTM Standards, E399-74,(1974).
Google Scholar
[15]
M. G. Gee, B. Roebuck, P. Lindahl, H.O. Andren, Constituent phase nanoindentation of WC/Co and Ti(C,N) hard metals, Mater. Sci. Eng. A. 209(1996):128-136.
DOI: 10.1016/0921-5093(95)10099-7
Google Scholar
[16]
T. Ma, P. Hedström, V. Ström, A. Masood, I. Borgh, A. Blomqvist, J.Odqvist, Self-organizing nanostructured lamellar (Ti,Zr)C-A superhard mixed carbide, Int. J. Refract. Met. Hard Mater., 51(2015):25-28.
DOI: 10.1016/j.ijrmhm.2015.02.010
Google Scholar