[1]
Goldschmidt, 2009. D4.6.6-Weld performance in track test-Supervision of weld properties in terms of rail profile, Rail straightness and neutral temperature. Preliminary report for innotrack project no. TIP-CT-2006-0314150. http://www.innotrack.net/IMG/pdf/d466-f2-weld-performance_track-test.pdf.
Google Scholar
[2]
Chen, Y., Weld defect formation in rail thermite welds. Proceedings of the institution of the mechanical engineers, Part F: Journal of rapid and rapid transit 220, pp.373-384. http://dx.doi.org/10.1243/0954409JRRT44.(2006).
DOI: 10.1243/0954409jrrt44
Google Scholar
[3]
Porcaro, R.P., Faria, G.L., Godefroid, L.B., Apolonio, G.B., Candido, L.C., Pinto, L.S. Microstructure and mechanical properties of a flash butt welded pearlitic rail. Journal of materials processing technology 270, pp.20-27. http://dx.doi.org/10.1016/j.jmatprotec. 02.013. (2019).
DOI: 10.1016/j.jmatprotec.2019.02.013
Google Scholar
[4]
Myers, J., Geiger, G. H., Poirier, D. R., 1982. Structure and properties of thermite weld in rails. Journalof Welding research 61,pp.258-268. http://files.aws.org/wj/supplement/WJ_1982_08_s258.pdf.
Google Scholar
[5]
Tawfik, D., Mutton, P.J., Chiu, W.K., 2008. Experimental and numerical investigations: Alleviating tensile residual stresses in flash butt welds by localized rapid post weld heat treatment. Journal of materials processing technology 196, pp.279-291. https://doi.org/10.1016/j.jmatprotec.05.055.(2007).
DOI: 10.1016/j.jmatprotec.2007.05.055
Google Scholar
[6]
Muster, H., Schmedders, H., Wick, K., Pradier, H., 1996. Rail rolling contact fatigue, the performance of naturally hard and head-hardened rails in track. Wear 191, pp.54-64. https://doi.org/10.1016/0043-1648(95)06702-7.
DOI: 10.1016/0043-1648(95)06702-7
Google Scholar
[7]
Scholl, M.R., Alloy design for Electroslag welded railroad rail. OHSU Digital Collections. https://doi.org/10.6083/M4959FHV.(1981).
Google Scholar
[8]
Turpin, R.B., Adaptation of the electroslag welding process to joining of railroad rail. OSHU Digital Collections. https://doi.org/10.6083/M45M63M5.(1983).
Google Scholar
[9]
Turpin, B., Danks, D., Electroslag field welding of railroad rail. Final report for High-Speed rail IDEA project 37, Transportation research board, Washington DC. http://apps.trb.org/cmsfeed/TRBNetprojectDisplay.asp?projectID=2299.(2003).
Google Scholar
[10]
Danks, D.,Recent advances in field electroslag rail welding, report 49. https://www.arema.org/files/library/2005_Conference_Proceedings/00049.pdf.(2005).
Google Scholar
[11]
Micenko, P., Muruganant, Li, H., Xu, X. Double dip hardness profiles in rail weld heat affected zone-literature and research review report, Improvements to railway welding. CRC rail innovation, Australia., 2013. pp.1-28. http://www.railcrc.net.au/object/PDF/.
Google Scholar
[12]
Khan, A.R., Yu, S., Wang, H., Jiang, Y., Effect of cooling rate on microstructure and mechanical properties in the CGHAZ of electroslag welded pearlitic rail steel. Metals 9, pp.742-758. http://dx.doi.org/10.3390/met9070742.( 2019).
DOI: 10.3390/met9070742
Google Scholar
[13]
ASTM E-112-13, Standard test methods for determining average grain size. ASTM International, West Conshohocken, PA, USA.(2013).
Google Scholar
[14]
Krauss, G., 2005. Steel: Processing, Structure and Performance, 1st Ed. ASTM International, Materials Park, Ohio, pp.281-296. https://scholar.google.com/scholar_lookup?title=Steels%3A%20Processing%2C%20Structure%20and%20Performance&publication_year=2005&author=G.%20Krauss.
Google Scholar
[15]
ASTM E092-17, Standard test methods for Vickers hardness and knop hardness of metallic materials. ASTM International, West Conshohocken, PA, USA.(2017).
Google Scholar
[16]
ASTM E370-03a, Standard test methods and Definitions for mechanical testing of steel products. ASTM International, West Conshohocken, PA, USA.(2003).
Google Scholar
[17]
ASTM E23-02a, Standard test methods for notched bar impact testing of metallic materials. ASTM International, West Conshohocken, PA, USA.(2002).
Google Scholar
[18]
Godefroid, L.B., Faria, G.L., Candido, L.C., Viana, T.G., 2014. Fatigue failure of a flash butt welded rail. Procedia Materials Engineering, 20th European conference on fracture (ECF20) 3, pp.1896-1901. http://dx.oi.org/10.1016/j.mspro.06.036.(2014).
DOI: 10.1016/j.mspro.2014.06.306
Google Scholar
[19]
Luzginova, N.V., Zhao, L. Sietsma, J., The cementite spheroidization process in high carbon steels with different chromium contents. Metallurgical and material Transaction A 39A, pp.513-521. http://dx.doi.org/10.1007/s11661-007-9403-3.(2008).
DOI: 10.1007/s11661-007-9403-3
Google Scholar