Shape Memory Effect of Polycrystalline Ni54Mn25Ga17.5Ta0.5 High Temperature Shape Memory Alloy with Wide Hysteresis Loop

Article Preview

Abstract:

Effect of Ta-alloying on microstructure, martensitic transformation, mechanical property and shape memory effect of Ni54Mn25Ga17.5Ta0.5 alloy has been systematically investigated. The results show that the substructure of Ni-Mn-Ga alloy significantly changed, which was converted from the plate martensite to the lath martensite. Compression tests show that a compressive strength of 1380 MPa with a fracture strain up to 21.92% can be achieved in the Ni54Mn25Ga17.5Ta0.5 alloy at room temperature. This is no changed martensite structure with non-modulated T martensite. In addition, the martensitic transition temperature obviously decreases from 350 °C to 208 °Cand hysteresis loop increases about 20 °Cwhen Ta substituted of Ni. The shape memory effect increased with the increase of pre-deformation, nevertheless, the shape recovery ratio appeared firstly increases and then decreases. When the pre-deformation is 10%, 15%, 20%, the shape memory effect of the alloy is 5.1%, 6.8% and 10%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, and V.V. Kokorin, Appl. Phys. Lett. 69 (1996), p.(1966).

Google Scholar

[2] J. Tellinen, T. Suorsa, A. Jaaskelainen, I. Aalito, K. Ullakko, in: M.Bremen (Ed.), Basic Properties of Magnetic Shape Memory Actuators, Actuator 2002, Bremen, Germany, (2002).

Google Scholar

[3] O. Heczko, A. Sozinov, K. Ullakko. IEEE Trans Mag. 36 (2000), p.3266.

Google Scholar

[4] A. Sozinov, A.A. Likhachev, Lanska N, Ullakko K. Appl Phys Lett. 80 (2002), p.1746.

Google Scholar

[5] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, V.K. Lindroos. J Phys IV.112 (2003), p.955.

DOI: 10.1051/jp4:20031039

Google Scholar

[6] V.A. Chernenko, E. Cesari, V.V. Kokorin, I.N. Vitenko. Scripta Metall. Mater. 33 (1995), p.1239.

Google Scholar

[7] H.B Xu, Y.Q. Ma, C.B. Jiang, Appl. Phys. Lett. 82 (2003), p.3206.

Google Scholar

[8] V.A. Chernenko, V. L'vov, J. Pons, E. Cesari, J. Appl. Phys. 93 (2003), p.2394.

Google Scholar

[9] Y. Xin, Y. Li, L. Chai, H. Xu, Scripta Mater. 54 (2006), p.1139.

Google Scholar

[10] Y.Q. Ma, C.B. Jiang, Y. Li, H. B. Xu, C.P. Wang, X.J. Liu, Acta Mater. 55 (2007), p.1533.

Google Scholar

[11] H.B. Xu, Mater. Sci. Forum 394–395 (2002), p.375.

Google Scholar

[12] Y.N. Koval, Mater. Sci. Forum 327–328 (2000), p.271.

Google Scholar

[13] J. Van Humbeeck, Trans. ASME, J. Eng. Mater. Technol. 12 (1999), p.98.

Google Scholar

[14] G.S. Firstov, J. Van Humbeeck, Y.N. Koval, Scripta Mater. 50 (2004), p.243.

Google Scholar

[15] H. Yan, B. Yang, Y.D. Zhang, Z.B. Li, C. Esling, X. Zhao, L. Zuo, Acta Mater. 111 (2016), p.75e84.

Google Scholar

[16] R. Chulist, W. Skrotzki, C.G. Oertel, A. Bohm, M. Potschke, Scripta Mater. 63 (2010), p. 548e551.

Google Scholar

[17] K. Bhattacharya, R.V. Kohn, Acta Mater. 44 (1996), p. 529e542.

Google Scholar