Three-Component Composite Based on Ultra-High Molecular Weight Polyethylene for Additive Manufacturing

Article Preview

Abstract:

A comparative analysis on structure, mechanical and tribological properties of a multicomponent extrudable polymer composites "UHMWPE + 17 wt. % HDPE-g-SMA + 12 wt. % PP" fabricated by i) FDM (fused deposition modeling) as well as hot pressing of ii) powder mixture, and iii) granules of the same composition has been conducted. It is shown that UHMWPE composites obtained by the 3D–printing over a complex of tribomechanical properties (wear resistance, friction coefficient, elastic modulus, yield point, tensile strength, elongation at break) are comparable with those of composites fabricated by compression sintering of granules (this is associated with formation of more homogeneous permolecular structure, first of all, due to the compounding with the help of a twin-screw extruder) and significantly exceed those for hot pressing of powder mixtures. The obtained results allow one to recommend this composite for manufacturing complex shape products for tribotechnical application at employing 3D-printing technologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-31

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. C. Tanzi, S. Farè, G. Candiani, Chapter 4 - Biomaterials and Applications, in: M. C. Tanzi, S. Farè, G. Candiani (Eds.), Foundations of Biomaterials Engineering, Academic Press, New York, 2019, pp.199-287.

DOI: 10.1016/b978-0-08-101034-1.00004-9

Google Scholar

[2] S. Kurtz, High Pressure Crystallized UHMWPEs, in: S. Kurtz (Eds.) UHMWPE Biomaterials Handbook, third ed., William Andrew Publishing, Norwich, NY, 2016, pp.434-448.

DOI: 10.1016/b978-0-323-35401-1.00024-7

Google Scholar

[3] P. Lanzillotti, J. Gardan, A. Makke, N. Recho, Strengthening in fracture toughness of a smart material manufactured by 3D printing, IFAC-PapersOnLine 51 (2018) 1353-1358.

DOI: 10.1016/j.ifacol.2018.08.342

Google Scholar

[4] J. R. C. Dizon, A. H. Espera, Q. Chen, R. C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf. 20 (2018) 44-67.

DOI: 10.1016/j.addma.2017.12.002

Google Scholar

[5] J. Gardan, A. Makke, N. Recho, Improving the fracture toughness of 3D printed thermoplastic polymers by fused deposition modeling, Int. J. Fract. 210 (1-2) (2017) 1–15.

DOI: 10.1007/s10704-017-0257-4

Google Scholar

[6] M. H. B. M. Ansari, M. H. I. B. Ibrahim, Thermal Characteristic Of Waste-Derived Hydroxyapatite (HA) Reinforced Ultra High Molecular Weight Polyethylene (UHMWPE) Composites For Fused Deposition Modeling (FDM) Process, IOP Conf. Ser.: Mater. Sci. Eng. 165 (2016) 012014-1 012014-15.

DOI: 10.1088/1757-899x/165/1/012014

Google Scholar

[7] C. Song, A. Huang, Y. Yang, Z. Xiao, J. Yu, Effect of energy input on the UHMWPE fabricating process by selective laser sintering, Rapid Prototyping Journal 23 (2017) 1069-1078.

DOI: 10.1108/rpj-09-2015-0119

Google Scholar

[8] Y. Li, H. He, Y. Ma, Y. Geng, J. Tan, Rheological and mechanical properties of ultrahigh molecular weight polyethylene/high density polyethylene/polyethylene glycol blends, Adv. Ind. Eng. Polym. Res. 2 (2019) 51-60.

DOI: 10.1016/j.aiepr.2018.08.004

Google Scholar

[9] S.V. Panin, V.O. Alexenko, D.G. Buslovich, N. Duc Anh, H. Qitao, Solid-Lubricant, Polymer - Polymeric and Functionalized Fiber- and Powder Reinforced Composites of Ultra-High Molecular Weight Polyethylene, IOP Conf. Ser.: Earth Environ. Sci. 115 (2018) 012010-1-012010-7.

DOI: 10.1088/1755-1315/115/1/012010

Google Scholar

[10] S.V. Panin, D.G. Buslovich, L.A. Kornienko, Yu.V. Dontsov, V.O. Alexenko, B.B. Ovechkin, Comparison of structure and tribotechnical properties of extrudable UHMWPE composites fabricated by HIP and FDM techniques, AIP Conf. Proc. 2051 (2018) 020229-1–020229-5.

DOI: 10.1063/1.5083472

Google Scholar

[11] B.A. Lyukshin, S.V. Shilko, S.V. Panin et al., Dispersion-Filled Polymer Composites for Technical and Medical Purposes, Publishing House of the SB RAS Science, Novosibirsk, (2017).

Google Scholar