Conditions for Quality Dimensions in Direct Laser Melting of Copper

Article Preview

Abstract:

This paper analyzes the effect of SLM parameters on mechanical characteristics and surface roughness of a single-component copper powder. The study reports on appropriate SLM conditions for a single-component copper powder; to form a layer a technique within layer-by-layer selective laser melting is suggested and comprises roughing, semi-finishing and finishing modes. The work establishes a range to vary surface roughness, porosity and ultimate compressive strength of a single-component copper powder by means of laser processing conditions. Rz is variable 332 to 689 μm, porosity ranges approximately 13-39%, and ultimate compressive strength is 8 to 104 МPа.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-13

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Gibson, D. Rosen, B. Stucker, Additive manufacturing technologies, Rapid Prototyping to direct digital manufacturing, New York, 2009, Springer, p.459.

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[2] J. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering, Assembly Automation, 23 (2003) 357 – 371.

DOI: 10.1108/01445150310698652

Google Scholar

[3] Y. Yan, S. Li, R. Zhang, F. Lin, R. Wu, Q. Lu, Z. Xiong, X. Wang, Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends, Tsinghua Science and Technology. 14, S1 (2009) 1-12.

DOI: 10.1016/s1007-0214(09)70059-8

Google Scholar

[4] Y. Zhang, L. Wu, X. Guo, J. of Materi Eng and Perform (2017). https://doi.org/10.1007/s11665-017-2747-y.

Google Scholar

[5] G. Strano, L. Hao, R. Everson, K. Evans, Surface roughness analysis, modelling and prediction in selective laser melting, Journal of Materials Processing Technology. 213, 4 (2013) 589–597.

DOI: 10.1016/j.jmatprotec.2012.11.011

Google Scholar

[6] A. Saprykin, N. Saprykina, D. Dudikhin, S. Emelyanenko, Influence of layer-by-layer laser sintering modes on the thickness of sintered layer of cobalt-chromium-molybdenum powder, Advanced Materials Research. 1040 (2014) 805-808.

DOI: 10.4028/www.scientific.net/amr.1040.805

Google Scholar

[7] W. Shifeng, L. Shuai, W. Qingsong, Ch. Yan, Z. Sheng, S. Yusheng, Effect of molted pool boundaries on the mechanical properties of selective laser melting parts, Journal of Materials Processing Technology. 214 (2014) 2660–2667.

DOI: 10.1016/j.jmatprotec.2014.06.002

Google Scholar

[8] D. Gu, Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods, Materials and Design. 30 (2009) 2903–2910.

DOI: 10.1016/j.matdes.2009.01.013

Google Scholar

[9] P. Mercelis, J.-P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid prototyping Journal, 12 iss: 5 (2006) 254-265.

DOI: 10.1108/13552540610707013

Google Scholar

[10] A. A. Saprykin, E. A. Ibragimov, E. V. Babakova, V. I. Yakovlev, Influence of mechanical activation of copper powder on physicomechanical changes in selective laser sintering products, AIP Conference Proceedings. 1683 (2015) 020199.

DOI: 10.1063/1.4932889

Google Scholar

[11] H. J. Niu, I. T. H. Chang, Instability of scan tracks of selective laser sintering of high speed steel powder, Scripta materialia. 41, n.11 (1999) 1229– 1234.

DOI: 10.1016/s1359-6462(99)00276-6

Google Scholar

[12] L.C. Zhang, D. Klemm, J. Eckert, Y.L. Haod, T.B. Sercombea, Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb– 4Zr–8Sn alloy, Scripta Materialia, 65 No. 1 (2011) 21-24.

DOI: 10.1016/j.scriptamat.2011.03.024

Google Scholar

[13] J. Jhabvala, E. Boillat, R. Glardon, Study of the interparticle necks in selective laser sintering, Rapid Prototyping Journal. 19 Iss: 2 (2013) 111 – 117.

DOI: 10.1108/13552541311302969

Google Scholar

[14] N. Tolochko, S. Mozzharov, I. Yadroitsev, T. Laoui, L. Froyen, V. Titov, M. Ignatiev, Selective laser sintering and cladding of single component metal powders, Rapid Prototyping Journal. 10 Iss: 2 (2004) 88 – 97.

DOI: 10.1108/13552540410526962

Google Scholar

[15] C. W. Visser, C. Sun, D. Lohse, Toward 3D printing of pure metals by laser-induced forward materials, Advanced Materials. 27 (2015) 4087–4092.

DOI: 10.1002/adma.201501058

Google Scholar

[16] N. Saprykina, A. Saprykin, D. Arkhipova, Influence of Shielding Gas and Mechanical Activation of Metal Powders on the Quality of Surface Sintered Layers, IOP Conf. Series: Materials Science and Engineering. 125 (2016) 012016.

DOI: 10.1088/1757-899x/125/1/012016

Google Scholar

[17] A. Saprykin, N. Saprykina, Engineering support for improving quality of layer-by-layer laser sintering, Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012. (2012) 6357719.

DOI: 10.1109/ifost.2012.6357719

Google Scholar

[18] A. A. Saprykin, E. А. Ibragimov, E. V. Babakova, Modeling the Temperature Fields of Copper Powder Melting in the Process of Selective Laser Melting, IOP Conference Series: Materials Science and Engineering. 142(1) (2016) 012061.

DOI: 10.1088/1757-899x/142/1/012061

Google Scholar