Influence of Electrolyte-Plasma Hardening Technological Parameters on the Structure and Properties of Banding Steel 2

Article Preview

Abstract:

This work is devoted to the study of the influence of technological parameters of electrolytic-plasma surface quenching (EPQ) on the structure and surface properties of samples of bandage steel 2. In the electrolytic-plasma treatment, we performed the cathode mode in an electrolyte containing an aqueous solution of 20% carbamide (NH2)2CO and 20% sodium carbonate Na2CO3, on the installation of EPO with appropriate technological processing conditions. According to the electron-optical, X-ray phase studies, the phase composition of the steel after the EPQ was determined this differs from the initial one by the formation of cementite and iron oxides on the surface of the samples. It is established that the microhardness of the bandage steel 2 after the EPQ during heating for 4 seconds increases 2.4 times in comparison with the initial state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-62

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S. Razumov, I.L. Pasholok, V.N. Zyurenko, Wheels of increased operational durability for freight cars of a new generation / Sat. scientific Tr .: The development of railway transport in the context of reform. M .: Intext, 2003. pp.199-206.

Google Scholar

[2] E.S. Yagodinsky The nature of damage to parts of the coupler and methods for their restoration // Collection of scientific works UkrDAZT - 2014. 145 - pp.171-174.

Google Scholar

[3] G.I. Brunchukov Methods to improve the operational durability of locomotive tires / Sb. scientific Tr.: The development of railway transport in the conditions of reform. M .: Intext, 2006. pp.214-220.

Google Scholar

[4] M.F. Verigo The reasons for the increase in the intensity of lateral wear of rails and wheel flanges. M .: Transport, 1992.46 p.

Google Scholar

[5] P. Clayton, K.J. Sawley, P.J. Bolton, G.M. Pell, Wear of bainitic steels // Wear. N120. 1987. p.pp.199-220.

DOI: 10.1016/0043-1648(87)90067-6

Google Scholar

[6] M. Ueda, K. Uchino, H. Kageyama, K. Motohiro, A. Kobayash, Development of bainitic steel rail with excellent surface damage resistance STS-Conference: Wheel/Rail Interface. Moscow, (1999).

Google Scholar

[7] S. Mitao, H. Yokoyama, S. Yamamoto, Y. Kataoka, T. Sugiyama, High strength bainitic steel rails for heavy haul railways with superior damage resistance. STS-Conference: Wheel/Rail Interface. Moscow, (1999).

Google Scholar

[8] P. Clayton, R. Devanathan, Rolling/sliding wear behavior of a chromium-molybdenum rail steel in perlitic and bainitic conditions // Wear. N156. 1992. p.pp.121-131.

DOI: 10.1016/0043-1648(92)90148-2

Google Scholar

[9] P. Clayton, X. Su, Surface initiated fatigue of perlitic and bainitic steels under water lubricated rolling/sliding contact // Wear. V. 200. 1996. p.pp.63-73.

DOI: 10.1016/s0043-1648(96)07250-x

Google Scholar

[10] E.I. Meletis, X. Nie, F.L. Wang, J.C. Jiang. Electrolytic plasma processing for cleaning and metal-coating of teel surface. Surfce and Coatings Nechnology 150(2002), 246-256.

DOI: 10.1016/s0257-8972(01)01521-3

Google Scholar

[11] V.K. Grigorevich, Hardness and microhardness of metals. - M .: Science, 1976. –230 p.

Google Scholar

[12] S.А. Saltykov, Stereometric metallography. - M .: Metallography, 1970. – 376p.

Google Scholar

[13] К.S. Chernyavsky, Stereology in Metallurgy. - Moscow: Metallurgy, 1977.- 280p.

Google Scholar

[14] М.К. Skakov, B.К. Rahadilov, D.B. Zarva, A.V. Gulkin, Installation of electrolytic-plasma processing // Innovative patent for the invention of the Republic of Kazakhstan: IPC С255F 7/00 - № 29978 / Application. 03/02/2014; Publ. 15.06.2015, Bul. № 6.

Google Scholar

[15] B. Rakhadilov, L. Zhurerova, A. Pavlov, Method of Electrolyte-Plasma Surface Hardening of 65G and 20GL Low-Alloy Steels Samples // IOP Conf. Series: Materials Science and Engineering.– 2016.–V. 142. pp.1-7.

DOI: 10.1088/1757-899x/142/1/012028

Google Scholar

[16] M. Skakov, B. Rakhadilov, E. Batyrbekov, M. Scheffler, A. Manapbaeva, G. Ayapbergenova, G. Karipbayeva: Influence of regimes electrolytic-plasma nitriding on the structural-phase state and the wear of steel P6M5. Bulletin of KazNTU (2014), No. 3 (103), pp.65-71.

DOI: 10.4028/www.scientific.net/amr.904.217

Google Scholar

[17] M. Skakov, B. Rahadilov, G. Karipbayeva, A. Manapbaeva: Structure-phase state of high-speed steel P6M5 after heat treatment. Bulletin of KazNU (2014), No.1 (48), pp.53-59.

Google Scholar

[18] N. A. Popova, L. G. Zhurerova, E. L. Nikonenko, M. K. Skakov: Effect of Plasma Electrolytic Nitrocarburizing on Phase Composition of 0.3C-1Mn-1Si-Fe Steel. ISSN 2075-1133, Inorganic Materials: Applied Research, (2017), Vol. 8, No. 1, p.130 –135.

DOI: 10.1134/s2075113317010300

Google Scholar

[19] B.K. Rahadilov, M.K. Skakov, T.R. Tulenbergenov, Tungsten Surface Erosion by Hydrogen Plasma Irradiation // Key engineering materials. – 2017. – Vol.736. – P. 46-51.

DOI: 10.4028/www.scientific.net/kem.736.46

Google Scholar