The Mechanism of Forming Coagulated Particles in Selective Laser Melting of Cobalt-Chromium-Molybdenum Powder

Article Preview

Abstract:

Selective laser melting (SLM) is thought to be a prospective manufacturing technology of complex metal components. Formation of coagulated particles when melting is reported to be an important factor for target mechanical properties of the end product. This paper discusses the effect of SLM parameters, including laser output power, laser movement velocity, preheating temperature of the powder, laser beam diameter on the mechanism of forming coagulated particles in melting cobalt-chromium-molybdenum powdered material. The study shows that a rise of power to 60 W at a scanning velocity 6 mm/s causes coagulated particles to expand to 350 μm; that is far bigger than a size of powder in as delivered state (90 μm). The work investigates the effect of mechanical activation of cobalt-chromium-molybdenum powder on dimensions of coagulated particles. The research data can be applied to the improvement of up-to-date optimization approaches to manufacturing process parameters in SLM technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-85

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.Y. Hedberg, B. Qian, Z. Shen, S. Virtanen, I.O. Wallinder, In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting, Dent Mater. 30 (2014) 525–34.

DOI: 10.1016/j.dental.2014.02.008

Google Scholar

[2] A. Takaichia, T. Nakamotoc, N. Jokod, N. Nomurab, Y. Tsutsumib, S. Migitab, et al., Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications, J Mech Behav Biomed Mater. 21 (2013) 67–76.

DOI: 10.1016/j.jmbbm.2013.01.021

Google Scholar

[3] Y.S. Jabbari, T. Koutsoukis, X. Barmpagadaki, S. Zinelis, Metallurgical and interfacial characterization of PFM Co–Cr dental alloys fabricated via casting, milling or selective laser melting, Dent Mater. 30 (2014) 79–88.

DOI: 10.1016/j.dental.2014.01.008

Google Scholar

[4] Nan Xiang, Xian-Zhen Xin, Jie Chen, Bin Wei, Metal–ceramic bond strength of Co–Cr alloy fabricated by selective laser melting, J Dent. 4 (2012)453–7.

DOI: 10.1016/j.jdent.2012.02.006

Google Scholar

[5] G. Barucca, E. Santecchia, G. Majni, E. Girardin, E. Bassoli, L. Denti, et al., Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering, Mater Sci Eng. 48 (2015) 263–9.

DOI: 10.1016/j.msec.2014.12.009

Google Scholar

[6] A. A. Saprykin, N. A. Saprykina, D. A. Arkhipova, Influence of Shielding Gas and Mechanical Activation of Metal Powders on the Quality of Surface Sintered Layers, IOP Conf Ser: Mater Sci Eng. 125 (2016) 012016.

DOI: 10.1088/1757-899x/125/1/012016

Google Scholar

[7] A. S. Yanyushkin, О. I. Medvedeva, N. A. Saprykina, Mechanism of Protective Membrane Formation on the Surface of Metal-Bonded Diamond Disks, Applied Mechanics and Materials. 682 (2014) 327-331.

DOI: 10.4028/www.scientific.net/amm.682.327

Google Scholar

[8] A. A. Saprykin, N. A. Saprykina, Engineering support for improving quality of layer-by-layer laser sintering, 7th International Forum on Strategic Technology IFOST. (2012) 6357719.

DOI: 10.1109/ifost.2012.6357719

Google Scholar

[9] A. A. Saprykin, E. A. Ibragimov , E. V. Babakova, Modeling the Temperature Fields of Copper Powder Melting in the Process of Selective Laser Melting, IOP Conference Series: Materials Science and Engineering. 142(1) (2016) 012061.

DOI: 10.1088/1757-899x/142/1/012061

Google Scholar

[10] A. A. Saprykin, N. A. Saprykina, D. V. Dudikhin, S. M. Emelyanenko, Influence of layer-by-layer laser sintering modes on the thickness of sintered layer of cobalt-chromium-molybdenum powder, Advanced Materials Research. 1040 (2014) 805-808.

DOI: 10.4028/www.scientific.net/amr.1040.805

Google Scholar

[11] A. Chiba, K. Kumagai, N. Nomura, S. Miyakawa, Pin-on-disk wear behavior in a like-on-like configuration in a biological environment of high carbon cast and low carbon forged Co–29Cr–6Mo alloys, Acta Mater. 55 (2007) 1309–18.

DOI: 10.1016/j.actamat.2006.10.005

Google Scholar

[12] Y. Lu, S. Wu, Y. Gan, J. Li, C. Zhao, D. Zhuo, J. Lin, Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application, Mater. Sci. Eng.: C 49 (2015) 517–525.

DOI: 10.1016/j.msec.2015.01.023

Google Scholar

[13] X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, Textures formed in a CoCrMo alloy by selective laser melting, J. Alloy. Compd. 631 (2015) 153–164.

DOI: 10.1016/j.jallcom.2015.01.096

Google Scholar

[14] M. Simonelli, C. Tuck, N.T. Aboulkhair, I. Maskery, I. Ashcroft, R.D. Wildman, R. Hague, A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al4V, Metall. Mater. Trans. 46 (9) (2015) 3842-3851.

DOI: 10.1007/s11661-015-2882-8

Google Scholar

[15] D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, C. Song, Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties, Mater. Des. 117 (2017) 121-130.

DOI: 10.1016/j.matdes.2016.12.060

Google Scholar

[16] X. Wang, Calibration of shrinkage and beam offset in CLS process, Rapid Prototyping Journal. 5 (3) (1999) 129-133.

DOI: 10.1108/13552549910278955

Google Scholar

[17] A. A. Saprykin, E. A. Ibragimov , E. V. Babakova, V. I. Yakovlev, Influence of mechanical activation of copper powder on physicomechanical changes in selective laser sintering products, AIP Conference Proceedings. 1683 (2015) 020199.

DOI: 10.1063/1.4932889

Google Scholar

[18] E. Bassoli, A. Gatto, L. Iuliano, Joining mechanisms and mechanical properties of PA composites obtained by selective laser sintering, Rapid Prototyp. 18 (2012) 100–108.

DOI: 10.1108/13552541211212087

Google Scholar

[19] C. Sanz, V.G. Navas, Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments, J. Mater. Process. Technol. 213 (2013) 2126–2136.

DOI: 10.1016/j.jmatprotec.2013.06.013

Google Scholar