Synthesis and Characterization of White Mineral Trioxide Aggregate Using Precipitated Calcium Carbonate Extracted from Limestone

Article Preview

Abstract:

White Mineral Trioxide Aggregate (WMTA) using precipitated CaCO3 (PCC) from limestone has been synthesized. PCC in calcite structure was extracted from limestone by calcination at 900 °C for 3 h, dissolved in 0.8 M nitric acid solution and followed with carbonation for 60 minutes. PCC was used for the synthesis of WMTA by mixing with tetraethoxyorthosilicate, bismuth oxide, aluminum oxide, catalyst of with HNO3 and NH3 solution and thermally treated at 1100 °C for 3 h. The products were characterized with Thermal Gravimetric Analysis-Differential Thermal Analysis (TGA-DTG), X-ray Diffraction (XRD), Frontier-Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and X-ray Fluorescence (XRF). The results showed that the PCC dominated calcite structure was obtained with 75.25% in yield and 99.42% in purity. The WMTA has been successfully synthesized by low thermal treatment at 1100 °C using catalysts of HNO3 and NH3 solution, proven by the presence of tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), and Bi2O3 in WMTA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-335

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Arifin, S. Pratapa, Triwikantoro, Darminto, Analysis of CaCO3 products from lime solution, AIP Conf. Proc. 90 (2013) 1554-1590.

DOI: 10.1063/1.4820291

Google Scholar

[2] J.I. Foley, Use of mineral trioxide aggregate (MTA) by postgraduates in restorative dentistry in the UK, Eur. J. Prosthodont. Restor. Dent. 19 (2011) 179-183.

Google Scholar

[3] K.S. Min, S.H. Yang, E.C. Kim, The combined effect of mineral trioxide aggregate and enamel matrix derivative on odontoblastic differentiation in human dental pulp cells, J. Endod. 35 (2009) 847-850.

DOI: 10.1016/j.joen.2009.03.014

Google Scholar

[4] M. Torabinejad, D.J. White, U.S.A. Patent 5415547 (1995).

Google Scholar

[5] K. Al-Hezaimi, J. Naghshbandi, S. Oglesby, J.H.S. Simon, I. Rotstein, Comparison of antifungal activity of white coloured and gray coloured MTA at similar concentrations against candida albicans, J. Endod. 32 (2006) 365-367.

DOI: 10.1016/j.joen.2005.08.014

Google Scholar

[6] S. Asgary, M. Parirokh, M.J. Eghbal, F. Brink, Chemical differences between white and gray mineral trioxide aggregate, J. Endod. 31 (2005) 101-103.

DOI: 10.1097/01.don.0000133156.85164.b2

Google Scholar

[7] J.W. Ahn, J.H. Kim, H.S. Park, J.A. Kim, C. Han, H. Kim, Synthesis single phase aragonite precipitated calcium carbonate in Ca(OH)2-Na2CO3-NaOH reaction system, Korean J. Chem. Eng. 22 (2005) 852-856.

DOI: 10.1007/bf02705664

Google Scholar

[8] K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Phase transformation of nanostructured titanium dioxide from anatase to rutile via combined ultrasound assisted sol-gel technique, Ultrason. Sonochem. 17 (2010) 409-415.

DOI: 10.1016/j.ultsonch.2009.09.003

Google Scholar

[9] M. Neumann, M. Epple, Monohydrocalcite and its relationship to hydrated amorphous calcium carbonate in biominerals, Eur. J. Inorg. Chem. 14 (2007) 1953-1957.

DOI: 10.1002/ejic.200601033

Google Scholar

[10] M. Aziz, Kalsium karbonat karakteristik serta penggunaannya, Makalah Teknik 3 (1997).

Google Scholar

[11] Y. Guven, E.B. Tuna, M.E. Dincol, O. Aktoren, X-ray diffraction analysis of MTA-plus MTA-angelus and diaroot bioaggregate, Eur. J. Dent. 8 (2014) 211-215.

DOI: 10.4103/2278-344x.130603

Google Scholar

[12] A. Meiszterics, L. Rosta, H. Peterlik, J. Rohonczy, S. Kubuki, P. Henits, K. Sinko, Structural characterization of gel-derived calcium silicate systems, J. Phys. Chem. A 114 (2010) 10403-10411.

DOI: 10.1021/jp1053502

Google Scholar

[13] G. Voicu, A. I. Bădănoiu, C.D. Ghiţulică, E. Andronescu, Sol-gel synthesis of white mineral trioxide aggregate with potential use as biocement, Dig. J. Nanomater. Biostruct. 7 (2012) 1639-1646.

Google Scholar

[14] F. Belnou, J. Bernard, D. Houivet, J.M. Haussonne, Low temperature sintering of MgTiO3 with bismuth oxide based additions, J. Eur. Ceram. Soc. 25 (2005) 2785–2789.

DOI: 10.1016/j.jeurceramsoc.2005.03.140

Google Scholar

[15] Q. Li, N.J. Coleman, The hydration chemistry of proroot MTA, Dent. Mater. J. 34 (2015) 458-465.

DOI: 10.4012/dmj.2014-309

Google Scholar

[16] I. Islam, H.K. Chng, A.U.J. Yap, Comparison of the physical and mechanical properties of MTA and portland cement, J. Endod. 32 (2006) 193-197.

DOI: 10.1016/j.joen.2005.10.043

Google Scholar

[17] W.N. Ha, T. Nicholson, B. Kahler, L.J. Walsh, Methodologies for measuring the setting times of mineral trioxide aggregate and portland cement products used in dentistry, Acta Biomater. Odontol. Scand. 2 (2016) 25-30.

DOI: 10.3109/23337931.2015.1135746

Google Scholar

[18] W.N. Ha, D.P. Bentz, B. Kahler, L.J. Walsh, The strongest contributor to setting time in mineral trioxide aggregate and portland cement, J. Endod. 41 (2015) 1146-1150.

DOI: 10.1016/j.joen.2015.02.033

Google Scholar

[19] T. Komabayashi, L.S.W. Spangberd, Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and portland cement: a study with a flow particle image analyzer, J. Endod. 34 (2008) 94-98.

DOI: 10.1016/j.joen.2007.10.013

Google Scholar