[1]
C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, S. Wei, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. 5 (2017) 1569-1585.
DOI: 10.1039/c6tc04269d
Google Scholar
[2]
N. Yi, N.R. Abidian, Conducting polymers and their biomedical applications, Woodhead Publishing Series in Biomaterials, (2016).
Google Scholar
[3]
R. Gangopadhyay, A. De, Conducting polymer nanocomposites: A brief overview, Chem. Mater. 12 (2000) 608-622.
DOI: 10.1021/cm990537f
Google Scholar
[4]
F. Khoerunnisa, H. Hendrawan, Y, Sonjaya, R.D. Hasanah, Electrically conductive nanocomposites polymer of poly(vinyl alcohol)/glutaradehyde/multiwalled cabon nanotubes: Preparation and characterization, Indones. J. Chem. 18 (2018) 383-389.
DOI: 10.22146/ijc.26620
Google Scholar
[5]
P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Investigations on electrical properties of (PVA: NaF) polymer electrolytes for electrochemical cell applications, Curr. Appl. Phys. 9 (2009) 165-171.
DOI: 10.1016/j.cap.2008.01.006
Google Scholar
[6]
Y.T. Jia, J. Gong, X.H. Gu, H.Y. Kim, J. Dong, X.Y. Shen, Fabrication and characterization of poly(vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method, Carbohydr. Polym. 67 (2007) 403-409.
DOI: 10.1016/j.carbpol.2006.06.010
Google Scholar
[7]
D.V. Pandi, S. Selvasekarapandian, R. Bhuvaneswari, M. Premalatha, S. Monisha, D. Arunkumar, K. Junichi, The development and characterization of proton conducting polymer electrolyte based on PVA, amino acid glycine and NH4SCN, Solid State Ionics 298 (2016) 15-22.
DOI: 10.1016/j.ssi.2016.10.016
Google Scholar
[8]
E. Campos, P. Coimbria, M.H. Gil, An improved method for preparing glutaraldehyde cross-linked chitosan–poly (vinyl alcohol) microparticles, Polym. Bull. 70 (2013) 549-561.
DOI: 10.1007/s00289-012-0853-4
Google Scholar
[9]
V.K. Guna, M. Ilangovan, A.M. Gangadharaiah, N. Reddy, Water hyacinth: A unique source for sustainable materials and products, ACS Sustain. Chem. Eng. 5 (2017) 4478-4490.
DOI: 10.1021/acssuschemeng.7b00051
Google Scholar
[10]
J.J. Bozell, G.R. Petersen, Technology the development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's Top10, revisited, Green Chem. 12 (2010) 539-554.
DOI: 10.1039/b922014c
Google Scholar
[11]
I. Aranaz, R. Harris, A. Heras, Chitosan amphiphilic derivatives. Chemistry and applications, Curr. Org. Chem. 14 (3) (2010) 308-330.
DOI: 10.2174/138527210790231919
Google Scholar
[12]
J. B. Marroquin, K.Y. Rhee, S.J. Park, Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties, Carbohydr. Polym. 92 (2012) 1783-1791.
DOI: 10.1016/j.carbpol.2012.11.042
Google Scholar
[13]
B. Smitha, S. Sridhar, A.A. Khan, Chitosan-poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications, J. Power Sources 159 (2006) 846-854.
DOI: 10.1016/j.jpowsour.2005.12.032
Google Scholar
[14]
V. Choudhary, B.P. Singh, R.B. Mathur, Carbon nanotubes and their composites, in: Suzuki Satoru (Eds.), Syntheses and applications of carbon nanotubes and their composite, INTECH, London, (2013).
DOI: 10.5772/52897
Google Scholar
[15]
N.C. Ngwuluka, N.A. Ochekpe, O.I. Aruoma, Functions of bioactive and intelligence natural polymers in the optimization of drug delivery, industrial applications for intelligent polymers and coatings, Springer, (2016).
DOI: 10.1007/978-3-319-26893-4_8
Google Scholar
[16]
J. Rams, M. Sánchez, A. Ureña, A. Jiménezsuárez, M. Campo, A. Güemes, Use of carbon nanotubes for strain and damage sensing of epoxy-based composites, Int. J. Soc. Netw. Min. 3 (2012) 1-10.
DOI: 10.1080/19475411.2011.651508
Google Scholar
[17]
W. Li, A. Dichiara, J. Bai, Carbon nanotube–graphene nanoplatelet hybrids as High performance multifunctional reinforcements in epoxy composites, Compos. Sci. Technol. 74 (2013) 221-227.
DOI: 10.1016/j.compscitech.2012.11.015
Google Scholar
[18]
W. Gao, Y. Zheng, J.B. Shen, S.Y. Guo, Electrical properties of polypropylene based composites controlled by multilayered distribution of conductive particles, ACS Appl. Mater. Interfaces 7 (2015) 1541-1549.
DOI: 10.1021/am506773c
Google Scholar
[19]
Y. Mouhamad, T. Mortensen, A. Holder, A.R. Lewis, T.G.G. Maffeis, D. Deganello, High performance tunable piezoresistive pressure sensor based on direct contact between printed graphene nanoplatelet composite layers, RSC Adv. 6 (2016) 125206-125210.
DOI: 10.1039/c6ra19540g
Google Scholar
[20]
D. J. Kwon, Z. J. Wang, J.Y. Choi, Damage sensing and fracture detection of CNT paste using electrical resistance measurements, Composites Part B. 90 (2016) 386-391.
DOI: 10.1016/j.compositesb.2016.01.020
Google Scholar
[21]
M.Z. Ji, H. Deng, D.X. Yan, X.Y. Li, L.Y. Duan, Q. Fu, Selective localization of multiwalled carbon nanotubes in thermoplastic elastomer blends: an effective method for tunable resistivity–strain sensing behavior, Compos. Sci. Technol. 92 (2014) 16-26.
DOI: 10.1016/j.compscitech.2013.11.018
Google Scholar
[22]
Q. Cheng, B. Wang, C. Zhang, Z. Liang, Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites, Small 6 (2010) 763-767.
DOI: 10.1002/smll.200901957
Google Scholar
[23]
A. Islam, Z. Imran, T. Yasin, N. Gull, S.M. Khan, M. Shafiq, T. Jamil, An investigation of Ac impedance and dielectric spectroscopic properties of conducting chitosan-silane crosslinked-poly (vinyl alcohol) blended films, Mater. Res. 18 (2015) 1256-1263.
DOI: 10.1590/1516-1439.043715
Google Scholar
[24]
S.V. Pawar, G.D. Yadav, PVA/chitosan-glutaraldehyde cross-linked nitrile hydratase as reusable biocatalyst for conversion of nitriles to amides, J. Mol. Catal. B: Enzym. 101 (2014) 115-121.
DOI: 10.1016/j.molcatb.2014.01.005
Google Scholar
[25]
E.S. Costa-Junior, E.F. Barbosa-Stancioli, A.A.P. Mansur, W.L. Vanconcelos, H.S. Mansur, Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications, Carbohydr. Polym. 76 (2009) 472-481.
DOI: 10.1016/j.carbpol.2008.11.015
Google Scholar
[26]
Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (2010) 357-401.
DOI: 10.1016/j.progpolymsci.2009.09.003
Google Scholar
[27]
Q. Jiang, X. Wang, Y. Zhu, D. Hui, Y. Qiu, Mechanical, electrical and thermal properties of aligned carbon nanotube/ polyimide composite, Composite Part B 56 (2014) 408-412.
DOI: 10.1016/j.compositesb.2013.08.064
Google Scholar