[1]
V.G.C. (auth. . L. M. Blinov, Electrooptic effects in liquid crystal materials, 1st ed. Springer-Verlag New York, (1994).
Google Scholar
[2]
E. Priestly, Introduction to liquid crystals. Springer Science & Business Media, (2012).
Google Scholar
[3]
J. R. Bruckner, Thermotropic and lyotropic liquid crystals, in a first example of a lyotropic smectic C* analog phase: Design, properties and chirality effects, Cham: Springer International Publishing, (2016).
DOI: 10.1007/978-3-319-27203-0_3
Google Scholar
[4]
R. Balamurugan, J.H. Liu, A review of the fabrication of photonic band gap materials based on cholesteric liquid crystals, React. Funct. Polym. 105 (2016) 9-34.
DOI: 10.1016/j.reactfunctpolym.2016.04.012
Google Scholar
[5]
J.D. Lin, C.L. Chu, H.Y. Lin, B. You, C.T. Horng, S.Y. Huang, T.S. Mo, C.Y Huang, C.R. Lee, Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples, Opt. Mater. Express. 5 (2015) 1419-1430.
DOI: 10.1364/ome.5.001419
Google Scholar
[6]
M.J. Costello, S. Meiboom, M. Sammon, Electron microscopy of a cholesteric liquid crystal and its blue phase, Phys. Rev. A 29 (1984) 2957-2959.
DOI: 10.1103/physreva.29.2957
Google Scholar
[7]
J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J.S. Patel, A new molecular ordering in helical liquid crystals, J. Am. Chem. Soc. 111 (1989) 8119-8125.
DOI: 10.1021/ja00203a009
Google Scholar
[8]
V. Borshch, Y.K. Kim, J. Xiang, M. Gao, A. Jakli, V.P. Panov, J.K. Vij, C.T. Imrie, M.G. Tamba, G.H. Mehl, O.D. Lavrentovich, Nematic twist-bend phase with nanoscale modulation of molecular orientation, Nat. Commun. 4 (2013) 2635.
DOI: 10.1038/ncomms3635
Google Scholar
[9]
D.-K. Yang, Electrical color tuning in polymer-stabilized cholesteric liquid crystals in Polymer-modified liquid crystals, RSC, (2019).
DOI: 10.1039/9781788013321-00166
Google Scholar
[10]
T.J. Atherton, J. R. Sambles, Orientational transition in a nematic liquid crystal at a patterned surface, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74 (2006) 22701.
DOI: 10.1103/physreve.74.022701
Google Scholar
[11]
F. Liu, X. Zhou, F. Cui, D. Jia, Synthesis and properties of poly(hydroxyethyl methacrylate) hydrogel for IOL materials, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 24 (2007) 595-598.
Google Scholar
[12]
C.S. Brazel, N.A. Peppas, Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures, Biomaterials 20 (1999) 721-732.
DOI: 10.1016/s0142-9612(98)00215-4
Google Scholar
[13]
C.P. Quinn, C.P. Pathak, A. Heller, J.A. Hubbell, Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors, Biomaterials 16 (1995) 389-396.
DOI: 10.1016/0142-9612(95)98856-9
Google Scholar
[14]
B. Ray, B.M. Mandal, Dispersion polymerization of acrylamide: Part II. 2, 2'-azobisisobutyronitrile initiator, J. Polym. Sci. Part A Polym. Chem. 37 (1999) 493-499.
DOI: 10.1002/(sici)1099-0518(19990215)37:4<493::aid-pola13>3.0.co;2-y
Google Scholar
[15]
S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Molecularly engineered p (HEMA)-based hydrogels for implant biochip biocompatibility, Biomaterials 26 (2005) 4767-4778.
DOI: 10.1016/j.biomaterials.2005.01.031
Google Scholar
[16]
S.M. Kelly, M. O'Neill, Liquid crystals for electro-optic applications in handbook of advanced electronic and photonic materials and device, Academic Press, (2001).
Google Scholar