Application of the CO2 Laser Photoacoustic Spectroscopy in Detecting Ammonia Gas (NH3) in Liver Disease Patient’s Breath

Article Preview

Abstract:

Using a CO2 laser photoacoustic spectroscopy with intracavity setup and multicomponent method we have done measurement on the ammonia, ehtylene and acetone gas concentrations in the breath of liver disease patients and in the healthy volunteers. The results of multicomponent analysis show that the average concentration of ammonia gas obtained from the breath of liver disease patients and healthy volunteers are (3.27 ± 0.75) and (1.34 ± 0.24) ppm, respectively. The highest and the lowest ammonia gas concentration of liver disease patients are 4.77 and 1.99 ppm. While, the highest and the lowest ammonia gas concentration of healthy volunteers are 1.89 and 1.08 ppm. For the ethylene and acetone concentrations, we found no significant difference between the average concentrations in the liver disease patients and in the healthy volunteers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-405

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Wang, P. Sahay, Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits, Sensors 9(10) (2009) 8230‒8262.

DOI: 10.3390/s91008230

Google Scholar

[2] M.J. Navas, A.M. Jimenez, A.G. Asuero, Human biomarkers in breath by photoacoustic spectroscopy, Clin. Chim. Acta. 413(15‒16) (2012) 1171‒1178.

DOI: 10.1016/j.cca.2012.04.008

Google Scholar

[3] A. Bajtarevic, C. Ager, M. Pienz, M. Klieber, K. Schwarz, M. Ligor, T. Ligor, W. Filipiak, H. Denz, M. Fiegl, W. Hilbe, W. Weiss, P. Lukas, H. Jamnig, M. Hackl, A. Haidenberger, B. Buszewski, W. Miekisch, J. Schubert, A. Amann, Noninvasive detection of lung cancer by analysis of exhaled breath, BMC Cancer 9(348) (2009).

DOI: 10.1186/1471-2407-9-348

Google Scholar

[4] J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikolajczyk, M. Nowakowski, Ultrasensitive laser spectroscopy for breath analysis, Opto-Electron Rev. 20(1) (2012) 26‒39.

DOI: 10.2478/s11772-012-0011-4

Google Scholar

[5] F.J.M. Harren, F.G.C. Bijnen, J. Reuss, L.A.C.J. Voesenek, C.W.P.M. Blom, Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser, Appl. Phys. B. 50(2) (1990) 137‒144.

DOI: 10.1007/bf00331909

Google Scholar

[6] F.J.M. Harren, G. Cotti, J. Oomens, S.T.L. Hekkert, Photoacoustic Spectroscopy in Trace Gas Monitoring, In: R. Meyers, Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., 2006, p.2203‒2226.

DOI: 10.1002/9780470027318.a0718

Google Scholar

[7] D.C. Dumitras, D.C. Dutu, C. Matei, R. Cernat, S. Banita, M. Patachia, A.M. Bratu, M. Petrus, C. Popa, Evaluation of ammonia absorption coefficients by photoacoustic spectroscopy for detection of ammonia levels in human breath, Laser Phys. 21(4) (2011) 796‒800.

DOI: 10.1134/s1054660x11070061

Google Scholar

[8] C. Popa, A.M. Bratu, R. Cernat, S. Banita, D.C.A. Dutu, D.C. Dumitras, Spectroscopic studies of ethylene and ammonia as biomarkers at patients with different medical disorders, U.P.B. Sci. Bull. Series A. 73(2) (2011) 167‒174.

DOI: 10.1007/s00340-011-4716-8

Google Scholar

[9] T. Hibbard, A. J. Killard, Breath ammonia levels in a normal human population study as determined by photoacoustic laser spectroscopy, J. Breath Res. 5(3) (2011).

DOI: 10.1088/1752-7155/5/3/037101

Google Scholar

[10] A. Rosencwaig, Photoacoustic and Photoacoustic Spectroscopy, John Wiley & Sons Ltd., New York, (1980).

Google Scholar